Curved Tooth Couplings

Basic Series

SBk - SBRk - SBLk - SRLk - SBGk
SRGk - SBkD - SBkT - SBki

Original Operation Manual
B590351/12.2015
Contents

1 Notes on this manual .. 5
 1.1 Subject matter and validity .. 5
 1.2 Copyright and property rights ... 6
 1.3 Target group .. 6
 1.4 Warnings for risks posed to people ... 6
 1.5 Warnings for possible damage to property .. 7
 1.6 Labelling in the text ... 7
 1.7 Figures ... 7
 1.8 Applicable documents .. 8
2 Product description ... 8
 2.1 Subject Matter and function ... 8
 2.2 Intended use .. 8
 2.3 Improper use ... 9
 2.4 Product components ... 9
 2.5 Requirements to be met by the area of use ... 9
 2.6 To be provided by the customer ... 9
3 Basic safety instructions .. 10
 3.1 Using the operation manual ... 10
 3.2 Required provisions to be met by the operating company .. 10
 3.3 Requirements to be met by personnel ... 10
 3.4 Safety instructions with regard to specific operating phases .. 11
 3.4.1 Operating phase: Transportation ... 11
 3.4.2 Operating phase: Assembly ... 11
 3.4.3 Operating phase: Operation ... 11
 3.4.4 Operating phase: Servicing ... 12
 3.4.5 Operating phase: Disassembly .. 12
 3.5 Safety instructions with regard to specific types of hazards .. 12
 3.5.1 Hazards caused by lubricants and other substances ... 12
 3.5.2 Risks caused by heat ... 12
 3.5.3 Risks due to electrical energy .. 13
 3.5.4 Risks caused by noise ... 13
 3.5.5 Hazards caused by moving parts ... 13
 3.6 Safety devices and guards .. 13
4 Transportation and storage ... 14
 4.1 Transportation ... 14
 4.2 Checking the delivery .. 14
 4.3 Storage ... 15
 4.4 Disposing of the packing .. 15
5 Assembly .. 16
 5.1 Markings on the coupling .. 16
 5.2 Preparing the coupling for assembly ... 17
 5.2.1 Partially disassembling and cleaning the coupling ... 17
 5.2.2 Drilling out the pre-drilled coupling .. 18
 5.2.3 Balancing the drilled out coupling ... 19
 5.3 Connecting the hubs or flanges to the shafts .. 19
 5.3.1 Key connection or splines in accordance with DIN 5480 ... 21
 5.3.2 Thermally joining the interference fit .. 21
 5.3.3 Hydraulically joining the interference fit ... 23
 5.4 Aligning the shafts ... 25
 5.4.1 Shaft displacements ... 25
 5.4.2 Minimum displacement ... 26
 5.4.3 Coupling with retaining ring ... 26
 5.4.4 Axial offset .. 27
 5.4.5 Radial offset .. 27
 5.4.6 Angular offset .. 28
 5.4.7 Determining the recommended alignment values ... 29
 5.4.8 Example of aligning the shaft ... 30
 5.5 Installing the coupling halves (all couplings) .. 30
 5.6 Assembling the coupling (depending on series) ... 32
 5.6.1 Basic version (SBk) .. 32
 5.6.2 Coupling with retaining ring (SBRk) ... 32
 5.6.3 Coupling with spacer (SBLk) .. 33
 5.6.4 Coupling with spacer and retaining ring (SRLk) .. 33
 5.6.5 Coupling with intermediate shaft (SBGk) .. 34
 5.6.6 Coupling with intermediate shaft and retaining ring (SRGk) .. 35
 5.6.7 Couplings with brake disc (SBkD, SBkT) ... 36
 5.6.8 Electrically insulated coupling (all series ending with "i") .. 37
 5.7 Screwing together the coupling .. 38
 5.7.1 Screwing together the coupling (not for series ending with "i") ... 38
 5.7.2 Screwing together electrically insulated coupling (all series ending with "i") 38
 5.7.3 Tightening torques for large size couplings ... 39
 5.8 Using distance plates ... 39
 5.8.1 Distance plates on SB k series ... 39
 5.8.2 Distance plates on SBRk and SRLk series (with retaining ring) .. 40

6 Lubrication .. 41

7 Operation ... 43

8 Detecting faults and troubleshooting .. 44
9 Servicing .. 46
 9.1 Checking the condition ... 47
 9.2 Maintenance .. 47
 9.2.1 Changing the lubricant ... 47
 9.2.2 Changing the lubricating grease .. 47
 9.3 Ordering spare parts ... 48
10 Disassembly .. 49
 10.1 Disassembling the coupling .. 50
 10.1.1 Disassembling the coupling without an intermediate shaft or spacer 50
 10.1.2 Disassembling the coupling with an intermediate shaft or spacer 50
 10.2 Pulling off the hubs or flanges .. 51
 10.2.1 Key connection or splines in accordance with DIN 5480 51
 10.2.2 Tapered interference fit .. 52
 10.2.3 Cylindrical or stepped cylindrical interference fit ... 55
11 Disposal .. 59
12 Technical data .. 59
 12.1 General data .. 59
 12.2 Figures with dimensions ... 60
 12.2.1 Dimensions for the SBk coupling ... 60
 12.2.2 Dimensions for the SBRk coupling ... 61
 12.2.3 Dimensions for the SBLk coupling ... 62
 12.2.4 Dimensions for the SRLk coupling ... 63
 12.2.5 Dimensions for the SBGk coupling ... 64
 12.2.6 Dimensions for the SRGk coupling ... 65
 12.2.7 Dimensions for the SBkD coupling ... 66
 12.2.8 Dimensions for the SBkT coupling ... 68
 12.2.9 Dimensions for the SBki coupling ... 70
 12.3 Tightening torques ... 71
 12.3.1 Tightening torques for self-sealing screw plugs ... 71
 12.3.2 Tightening torques for screws used by couplings in the insulated version 71
 12.3.3 Tightening torques for other screws ... 71
 12.4 Lubricants .. 72
 12.5 Parts list and part numbers ... 74
 12.5.1 Parts list and spare parts list ... 74
 12.5.2 Figures with part numbers ... 75
13 Index of technical terms .. 80
14 Index .. 83
1 Notes on this manual

1.1 Subject matter and validity

This operation manual from RENK AG (Rheine plant) describes the transportation, assembly, operation, servicing, disassembly and disposal of the Curved Tooth Couplings series listed in the following table.

The couplings described in this operation manual are also called the "product" in the following.

If special versions of the coupling are used, this operation manual can be supplemented with additional instructions.

If the coupling has been specified for use in potentially explosive atmospheres, instructions on ATEX are supplied in addition to the operation manual. It is vital that you observe all the information and regulations contained in the additional instructions on ATEX.

<table>
<thead>
<tr>
<th>Design configurations used in the coupling</th>
<th>Insulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic version</td>
<td>SBk</td>
</tr>
<tr>
<td>Retaining ring</td>
<td>SBRk</td>
</tr>
<tr>
<td>Spacer</td>
<td>SBLk</td>
</tr>
<tr>
<td>Spacer and retaining ring</td>
<td>SRLk</td>
</tr>
<tr>
<td>Intermediate shaft</td>
<td>SBGk</td>
</tr>
<tr>
<td>Intermediate shaft and retaining ring</td>
<td>SRGk</td>
</tr>
<tr>
<td>Brake disc for shoe brake</td>
<td>SBkD</td>
</tr>
<tr>
<td>Brake disc for disc brake</td>
<td>SBkT</td>
</tr>
</tbody>
</table>

Tab. 1: Design configurations used in the coupling

Only use this operation manual for the specified products.

The operation manual is an important aid for the successful and safe operation of the product. The operation manual contains important notes on how to operate the product safely, properly and efficiently. You can prevent risks, repair costs and downtimes by paying attention to the operation manual. Complying with the operation manual increases the reliability and service life of product and machine.

The operation manual must always be available for working on the product.

In addition to this operation manual, the applicable national and international regulations on accident prevention, on environmental protection as well as the recognised rules concerning working safety and workmanlike conduct all need to be observed at the operating site.

The safety regulations used by the European Union and Germany are incorporated in this operation manual.
1.2 Copyright and property rights

The documentation as a whole and this document are protected by copyright. All rights reserved.

The reproduction of these documents, in part or as a whole, as well as making use of them or making them available to others, i.e. for the purpose of competition or disclosure to third parties, shall require the previous consent of RENK AG.

1.3 Target group

This operation manual is aimed at qualified specialist personnel who plan, execute, manage or monitor the work described in this document.

Specialist personnel are persons who owing to their technical training, know-how and experience, as well as their knowledge of the relevant standards and regulations, are capable of assessing the work assigned to them and identifying possible hazards.

The operating company must instruct the specialist personnel regarding the safe and proper use of the product.

All persons working with the product need to have read and understood this operation manual, and make use of it.

1.4 Warnings for risks posed to people

The following warnings indicate hazards and risks that could lead to personal injury. The warnings contain information about the type and severity of the hazards.

Always observe the warnings and follow the relevant measures put in place to prevent hazards.

DANGER

Type and source of danger to life (consequence: extremely serious injuries or death)!

Imminent danger if not observed.

- Measure put in place to prevent hazard.

WARNING

Type and source of risk of injury (consequence: extremely serious injuries with irreversible damage)!

Possible danger if not observed.

- Measure put in place to prevent hazard.

CAUTION

Type and source of risk of injury (consequence: minor injuries)!

Possible danger if not observed.

- Measure put in place to prevent hazard.
1.5 Warnings for possible damage to property

The following warnings indicate hazards and risks to property, which could lead to material damage as a result of the way the product is handled. Always observe the warnings and follow the relevant measures put in place to prevent hazards.

NOTICE

Type and source of the risk of damage!
Possible damage to property if not observed.
- Measure put in place to prevent hazard.

1.6 Labelling in the text

The following symbol points to specific information.

![Symbol](image)

indicates information which facilitates the working task, ensures an efficient workflow and provides other useful information.

Individual points in a list are distinguished by a dash:
- Item in the list.

Individual steps in a sequence of tasks are highlighted with a bullet point. The steps of action must be executed in the correct sequence (from top to bottom):
- Step of action.

Figures include item numbers which indicate components. These numbers are printed in bold type in the associated text, for example (1). They always relate to the preceding figure. Numbers relating to a different figure than the preceding one also include the number of the figure, for example (4 in Fig. 3).

1.7 Figures

The figures in this manual are used for understanding and visualising the work described. Always observe for all work the corresponding drawings in the applicable documents. The figures used in this manual are not a replacement for dimension sheets, for example.
1.8 Applicable documents

Other documents contained in the complete set of documentation from RENK AG (Rheine plant) also apply in conjunction with this operation manual:

– Table of lubricants for Curved Tooth Couplings with lubricant filling.
– Dimension sheet (if supplied).
– Additional instructions (only for special versions).

This operation manual and all applicable documents are part of the product.

– Always keep the complete set of documentation ready and available for all work carried out.
– Pass the complete set of documentation on to the successor should the operating company be changed.
– In the event of contradictory figures and data, please always observe the figures and data in the dimension sheet.
– Before commencing work, please contact RENK AG (Rheine plant) in the event of missing or unclear information in the complete set of documentation.

2 Product description

2.1 Subject Matter and function

The coupling consists of the coupling halves A and B and, depending on the design, the spacer or the intermediate shaft (see chapter 12).

The coupling halves consist of the housing with internal teeth and hub with curved teeth.

The coupling allows displacements of the shafts. Axial, angular and radial displacements are all possible.

The couplings in this series are designed for grease lubrication only.

The components used in the coupling are either finished machined upon request and balanced in accordance with customer specifications, or just delivered pre-drilled. Special versions, e.g. with clamping flange or with a greater ability to adjust shaft misalignments are available upon request.

2.2 Intended use

The coupling is used for transmitting the torque between connected machine parts and for compensating for displacements caused by misalignment.

Also constituting intended use is:

– Complying with the operation manual and the applicable documents.
– Always using the product within the guidelines from the technical data (see chapter 12).
– Carrying out all retrofitting work or additions with accessories only after this has been approved in writing by RENK AG (Rheine plant).
2.3 Improper use

Improper use can result in a risk of personal injury as well as damage to property and the risk of product failure, all of which the manufacturer shall not be liable for.

The following constitutes improper use and is prohibited:

– Using the product outside the specifications given in the technical data.
– Using the product without or with not enough lubricant.
– Welding on product components.
– Unauthorised rebuilds or modifications on the product.
– If welding work is carried out in the vicinity of the product, the product must not be located between the welded joint and the earthing for the welding equipment; i.e. the product must not be within the electric circuit.

2.4 Product components

Product components and items included in the scope of delivery:

– Coupling, fully or partially assembled.
– Operation manual.
– Applicable documents.

2.5 Requirements to be met by the area of use

Include adequate space all around the product and its guard in your plans for assembly, servicing and disassembly at the location of installation.

The temperature in the area of use has to comply with the technical data.

The subsurface must be suitable for accommodating the weight loads during transport and assembly.

2.6 To be provided by the customer

To be provided by the customer for assembly are:

– Suitable means of transportation and lifting tackle.
– Usual set of tools (workshop trolleys).
– Rubber mallet.
– Torque wrench.
– Device for heating up the hub (e.g. oven or ring burner).
– Measuring instruments for measuring the alignment.
– Measuring instruments for measuring the temperature of the components.
– Device for pulling off the hub or flange.
– Pressurised oil device, including lubricant.
– Lubricant for lubricating the toothing.
– Guard.
3 Basic safety instructions

Basic safety instructions apply generally to several activities. For all types of work, always observe the basic safety instructions, observe the safety instructions at the beginning of the chapters and the safety instructions prior to certain potentially hazardous activities.

Safety conscious behaviour and observance of the safety instructions can help to prevent hazards arising that could have fatal consequences for the operator or third parties, and also helps to avoid risks of damaging the product or other material assets, and will also help in avoiding downtimes.

3.1 Using the operation manual

The operation manual is an essential part of the product and provides information on its correct, safe and efficient use.

The operation manual needs to be available for all types of work using the product. If the operation manual gets lost or becomes unusable, then you can order a new one at RENK AG (Rheine plant).

The manufacturer shall not be liable for any damages occurring due to the disregard of this operation manual.

3.2 Required provisions to be met by the operating company

The operating company may only employ instructed and qualified specialist personnel, who have read and understood the operation manual, to work with the product.

The operating company is responsible for proper transportation, assembly, operation, maintenance and repair, and disposal.

The operating company may not make any changes to, nor perform any extension or retrofitting work on, the product without the approval of RENK AG (Rheine plant). This also applies to assembly procedures, safety device settings and to welding work performed on parts of the product.

3.3 Requirements to be met by personnel

Only instructed and qualified specialist personnel are permitted to work with the product and need to have read and understood this operation manual, and make use of it.

The specialist personnel need to have been instructed by the operating company in the following themes:

– Safe handling of the product whilst being conscious of the hazards involved.
– Regulations in regard of accident prevention and environmental protection.
– Required personal protective equipment (protective gloves, protective goggles, helmet, safety footwear and standard protective clothing).
– Responsibility and workplace communication.
– Safe transportation of the product.
– Product storage.
– Operating and servicing the product.
– Response in the event of problems.
– Disassembling the product.
3.4 Safety instructions with regard to specific operating phases

3.4.1 Operating phase: Transportation

- Never stand underneath a suspended load.
- Prior to transportation, familiarise yourself with the weight, centre of gravity, construction and attachment points for the packing and product using the technical data as a guide.
- If available, always use for transportation the attachment points or lifting threads marked on the packing or stipulated in the technical data.
- Only use lifting tackle and load carrying attachments with an adequate lifting capacity.
- Always secure the product against rolling away or turning over, e.g. if you need to move the product or components of the product into a different position by tilting it.
- Use anti-slip mats as an underlay during lifting or turning operations applied to components, to prevent damage from occurring due to the unit slipping.
- Immediately remove any lubricants from the wetted surfaces that may have escaped out of the product during transportation.
- Check the product for damage after transportation.

3.4.2 Operating phase: Assembly

- Switch the machinery train off and secure the control devices against unwanted activation.
- Observe the assembly procedures described.
- Do not make any changes to the product, nor perform any extension or retrofitting work on it.
- Do not change the factory settings of safety devices.
- Always secure the product against rolling away or turning over, e.g. if you need to move the product or components of the product into a different position by tilting it.
- Use a guard to safeguard persons against being caught in the product, wound in or against the product from being touched inadvertently.

3.4.3 Operating phase: Operation

- Only operate the product when it is completely assembled and fully lubricated, and when the guards are completely assembled and working correctly.
- Any malfunctions on the product have to be eliminated immediately.
- If any changes emerge in the operational behaviour (e.g. noises or vibrations) or if the product is faulty, then shut down the product immediately and eliminate the causes of the problem.
3.4.4 Operating phase: Servicing

- Switch the machinery train off and secure the control devices against unwanted activation.
- Before removing the guard, wait for the product and adjacent machine parts to come to a standstill as these may still be running for some time afterwards.
- Before starting work, allow the product and adjacent machine parts enough time to cool down in order to avoid burns.
- Adhere to the deadlines stipulated for the system and those specified in the operation manual for recurring maintenance work.
- Retighten all screwed connections undone for maintenance work and observe the details given in regard to the tightening torques.
- Install the guards removed for the servicing work and check that they are working correctly before the product is started up.

3.4.5 Operating phase: Disassembly

- Switch the machinery train off and secure the control devices against unwanted activation.
- Before removing the guard, wait for the product and adjacent machine parts to come to a standstill as these may still be running for some time afterwards.
- Before starting work, allow the product and adjacent machine parts enough time to cool down in order to avoid burns.
- Always secure the product and components used in the product against rolling away or turning over.

3.5 Safety instructions with regard to specific types of hazards

3.5.1 Hazards caused by lubricants and other substances

- Observe and comply with the applicable regulations and data sheets from the manufacturer when working with lubricants, cleaning agents and other chemical substances.
- Prevent slipping risks by immediately and completely removing any leaked lubricants from all wetted surfaces and, if necessary, use suitable binding agents.
- Lubricants could contaminate the soil and groundwater. Make sure that no lubricants get into the ground, soil, sewage system or the groundwater.
- Dispose of lubricants and any waste containing lubricants properly and observe the environment protection conditions.

3.5.2 Risks caused by heat

- The product and machine parts can become very hot during operation. Before starting work, allow the product and adjacent machine parts enough time to cool down in order to avoid burns.
- Wear suitable protective clothing for work on hot components.
3.5.3 **Risks due to electrical energy**

- Install optional electrical accessories in a technically correct manner.

3.5.4 **Risks caused by noise**

The continuous sound pressure level (A-weighted) of the product is below 83 dB(A). This is why the wearing of ear protectors is not mandatory due to the noise coming from the product.

We recommend permanently wearing ear protectors in the vicinity of loud machines.

3.5.5 **Hazards caused by moving parts**

- Rotating and moving parts need to be protected against access by people using guards in accordance with the legal requirements.

3.6 **Safety devices and guards**

- Prior to starting up the product after maintenance or servicing work, make sure that all removed guards have been reattached.
- All safety devices and guards need to be in place when the system is running.
- Only remove the guards if the product is at standstill and is secured against being inadvertently started up.
- Guards may only be removable using tools.
4 Transportation and storage

4.1 Transportation

In addition to the basic safety instructions given in Chapter 3, always observe the following so that damage can be prevented during transportation:

- If possible, keep the product in its original packing until shortly before assembly, thus helping to prevent damage in transit and to avoid contamination.
- Use suitable attachment points or lifting threads in order to avoid damage in transit due to components becoming loose.
- In order to prevent damage to the surface of the product, always use round slings, lifting straps or similar, and include edge protection. Never use wire cables or chains.
- Do not use levers, e.g. made of metal, that could damage the components. For example, use wooden products or plastic rods as levers.
- Avoid impacts and knocks that could deform and damage the product.
- Check the product for damage after transportation.
- Avoid having any contamination on sealing elements or joining surfaces.

4.2 Checking the delivery

We can deliver the product in accordance with your order, fully or partially assembled.

- Check the complete scope of delivery using the delivery note and packing list as a guide, and notify RENK AG (Rheine plant) in writing (e.g. per e-mail) of any deviations from the scope of delivery within 2 weeks upon receipt of delivery.
- Check the delivery for any damage (visual inspection) and note any damages on the delivery note from the freight forwarder. Also, immediately report any damages to last freight forwarder and to RENK AG (Rheine plant). Keep the packing in case the freight forwarder needs to check it or should it be needed for return shipment.

If parts are damaged to such an extent that a return shipment is needed, please contact RENK AG (Rheine plant) beforehand.
- Where applicable, pack the delivery for return shipment such that no further damage can occur during properly conducted transportation.
4.3 Storage

NOTICE

The coupling can be damaged by corrosion if the storage period is exceeded! Corrosion can render the coupling unserviceable.

- Check the coupling for signs of corrosion every four weeks after the storage period has been exceeded.
- If there are signs of corrosion, use a long term preservative in accordance with the manufacturer's instructions to protect all coupling elements – after having consulted RENK AG (Rheine plant).

The default preservation used for the coupling is designed for indoor, dry transportation and storage lasting six months.

If the coupling is stored for longer than six months after delivery ex works, then the preservation will have to be renewed.

Preservation used in moist, salty or acidic conditions for transport and storage or long-term storage is possible upon request.

- All parts of the coupling:
 - should be stored indoors and in dry conditions.
 - should not be exposed to humid, salty or acidic atmospheres, nor atmospheres containing chemicals.
 - should be protected against mechanical damage.
- Observe the period of storage.
- Do not remove the preservation until shortly before assembly.

4.4 Disposing of the packing

The packing is adapted to the size, scope and transport route of the delivery.

- Dispose of the packing in accordance with the applicable national regulations.
5 Assembly

In addition to the basic safety instructions given in Chapter 3, always observe the following so that damage can be prevented during assembly:

– Always lift the coupling and parts of the coupling using suitable lifting tackle and also use edge protection, anti-slip mats or similar.

– Only use suitable tools (e.g. rubber mallet as a striking tool) and the appropriate devices and installation methods in order to prevent burr formation, deformation and coupling failure. Never use hard striking tools or pointed or sharp tools.

– Observe the instructions provided by the manufacturer of the machines to be coupled and by the manufacturer of the devices used for the installation.

– Only use solvent-free cleaning agents, e.g. wax solvents, benzine or alkaline industrial detergents so that surfaces and gaskets used in the coupling do not get damaged. Never use cleaning agents containing solvents or petrol for cleaning the coupling.

– Remove any stickers that may still be found on the parts.

– Coat the screws using a thin film of lubricating oil. In doing so, never use grease, paste or similar that reduces friction, as this will change the required friction coefficient ($\mu = 0.14$), and the screws could tear off.

– Observe the tightening torques for the screws.

– If a dimension sheet has been supplied, it is vital that you observe the data given in that dimension sheet.

5.1 Markings on the coupling

![Markings on the coupling](image.png)

Fig. 1: Markings on the coupling
Tab. 2: Example of marking using the order number 880120/100/1

<table>
<thead>
<tr>
<th>Side</th>
<th>Zero setting</th>
<th>Order number</th>
<th>Item in the order</th>
<th>Seq. no. of the order item</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>880120</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>880120</td>
<td>100</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 1 includes examples of the markings on the coupling.
The marking consists of the side designation ("A" or "B"), the zero setting ("0") and the order number.
The marking can be found on the largest outer diameter on the main parts of the coupling or both on the front surface (hub) and on the packing for the small parts supplied.
– Check whether all parts and data required for assembly are available.
– Take care to ensure that you only use the coupling specific to the application and the parts belonging to that coupling.
– Assemble the coupling in accordance with the factory markings and at the correct sides in accordance with system planning.

5.2 Preparing the coupling for assembly

The coupling must first be partially disassembled and cleaned.
According to the order, the hubs or flanges used in the coupling are either delivered ready drilled and, where applicable, balanced, or just pre-drilled. Pre-drilled components will have to be drilled out and balanced, if necessary.
Then you can fit the hubs, or, in couplings with an intermediate shaft, the flanges onto the shaft journals and install the coupling halves.

5.2.1 Partially disassembling and cleaning the coupling

If, in the event of a coupling with intermediate shaft being used, the flanges are going to be fitted onto the shaft journals and the final installation of the coupling is going to take place at a lengthy interval, then only remove and clean the two flanges first.

The assembly state of the coupling when delivered can vary depending on the order or size. Adapt the assembly procedure accordingly.
● Remove the housing covers.
● Remove the screwed joints on the housings.
● Screw the screws into the threaded extraction holes in the flanges for the adjacent components and thus separate the components from one another.
● Keep the screws in a safe place.
● Clean all parts of the coupling prior to assembly using solvent-free cleaning agents and completely remove the preservative.
5.2.2 Drilling out the pre-drilled coupling

DANGER

Risk of fatal injury due to the coupling bursting!

If the bore hole is too large or the shrinkage strain in the coupling elements is too high, this can result in the coupling bursting and causing life threatening injuries.

- Drilling the hole should be done carefully and in accordance with the specifications.

The operator is responsible for the design and implementation of the shaft-hub connection.

If the coupling is delivered just pre-drilled upon request, then the two hubs or flanges will still need to be drilled out to the required actual dimension.

Check the following prior to drilling out:

- The maximum permissible bore for d1 and d2, or d3 and d4 stated in the technical data must not be exceeded and applies only to fitting key grooves in accordance with DIN 6885/1.

- If interference fits are used, then the resultant stress will have to be checked by way of calculation.

- Unless otherwise stated, the minimum yield strength for a standard hub or flange is 430 N/mm². The stresses in the interference fit and the stresses (expansion pressure) during installation or removal must not exceed this value.

- If an interference fit is used, then you will need to both calculate the required oversize and select the tolerances yourself. Excessive oversize leads to widening of the hub's toothed tip or to centring of the flange. The tooth tip or the centring must then be rectified after previous consultation with RENK AG (Rheine plant).

- If fitting key connections are used, please observe the tolerances in the following table as reference values.

<table>
<thead>
<tr>
<th>Bore</th>
<th>F7</th>
<th>H7</th>
<th>J7</th>
<th>K7</th>
<th>M7</th>
<th>P7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaft</td>
<td>s6</td>
<td>p6</td>
<td>n6</td>
<td>m6</td>
<td>k6</td>
<td>h6</td>
</tr>
</tbody>
</table>

Tab. 3: Recommended tolerances for fitting key connections
5.2.3 Balancing the drilled out coupling

If needed, you will have to balance the drilled-out hubs or flanges. The unbalance produced by reworking will have to be eliminated by means of material removal at the marked surfaces (A).

Please observe the following when balancing:

– Select the balancing quality in accordance with your requirements.
– Always balance the parts at two levels in a technically correct manner (e.g. in accordance with ISO 1940).
– The operations involving material removal must be on an outer radius as far as possible from the axis of the coupling, so that you have to remove the least possible amount of material.
– If the shafts with fitted hubs or flanges are dynamically balanced, then the material should not be removed from the hubs or flanges.

5.3 Connecting the hubs or flanges to the shafts

The hubs or flanges can be connected to the shafts in different ways:

– Fitting key connection or splines in accordance with DIN 5480.
– Thermally joining the interference fit.
– Hydraulically joining the interference fit.

Other connections are possible upon request.
Check the dimensions of the bore hole and the shaft dimensions before commencing with work.
Check whether the bore holes and shafts are well chamfered and burr-free. Remove any burrs or damage.

Install the coupling halves one after the other as described below:

NOTICE

Risk of damaging the O-rings by heat!
- When the hub is heating up, protect the O-rings against the heat for as long as it takes until the hub and shaft have cooled down again.

NOTICE

Risk of damage due to loss of adhesive force if unsuitable lubricants (grease, paste or similar) are used!
The coupling could slip, not transmit the torque and get damaged.
- Coat the joining surfaces on the flange or hub only using a thin film of mineral oil without additives.

Fig. 3: Pushing on the housing cover and O-rings

Key

1. Housing cover
2. Hub
3. O-ring

It is vital that the housing covers (1) and the O-rings (3) are pushed over the two shafts prior to fitting the hubs (2).

- Align the housing cover with the outer sides to the machines being coupled.
- Push the housing cover and O-rings over the two shafts.
5.3.1 Key connection or splines in accordance with DIN 5480

Required tools:
- Suitable ring burner, oven or induction heater.
- Temperature gauge.
- Lifting tackle for holding the hub.

- Insert the key into the fitting key groove for the shaft.

CAUTION

Risk of burns due to heated device or components!
Burns on parts of the body are possible.
- Wear suitable protective clothing.

- Evenly heat the hub or flange all around using a suitable device (e.g. ring burner, oven or inductively) up to a temperature of 80 °C. Observe the instructions from the device manufacturer in doing so.
- Fit the hub or flange onto the shaft. Observe the direction of installation.
- Secure the hub against axial shift, e.g. using a support plate or locking screws.

5.3.2 Thermally joining the interference fit

Required tools:
- Suitable ring burner, oven or induction heater.
- Temperature gauge.
- Lifting tackle for holding the hub.

Required data:
- Jointing temperature
- Pull up dimension (for tapered bore hole).

Please refer to the dimension sheet for the required data or contact the system planner or RENK AG (Rheine plant).

If tapered connections are used:
- If it is not hot, push the hub or flange so far onto the shaft that the fitting surfaces adjoin each other without pressure.
- Measure and note down the resulting position (zero position) in relation to a reference edge. Select the reference edge such that the pull up dimension can also be measured after fitting.

If tapered or cylindrical connections are used:
- Evenly heat up the hubs or flanges all around but not higher than necessary for the joint clearance.

CAUTION

Risk of burns due to heated device or components!
Burns on parts of the body are possible.
- Wear suitable protective clothing.
The oven should be as close as possible to the installation point so that the expansion of the component, which cools down during transportation, is not reduced too much. Do the joining in a room free of draught if possible and join the components quickly after they have been warmed up.

- Evenly heat the hub or flange all around using a suitable device (e.g. ring burner, oven or inductively) up to the required joining temperature. Observe the instructions from the device manufacturer in doing so.
- When heating up, continually check the temperatures at various positions of the bore hole.
- Check the expansion of the bore hole prior to fitting.

DANGER

Risk of fatal injury due to the coupling elements bursting!

Tapered hubs or flanges that have been fitted on too far can burst immediately or during later operation, and ejected coupling elements can lead to life threatening injuries.

- Comply with the stipulated pull up dimension if tapered connections are used. Do not fit the hub or flange on too far.

- Fit the hub or flange onto the shaft in the required position.
- Secure the hub or flange axially against slipping, e.g. using a support plate.
- Allow the hub, or flange and shaft to cool down as much as possible to the ambient temperature.
- Remove axial securing means. Suitable axial securing means, e.g. using a support plate, are constantly required in the event of a steep angle being used in the tapered connection (taper ratio less than 1:30). In this case, do not remove the axial securing means, or replace it at a later time with a suitable axial securing means.
- Check the position of the hub or flange and correct if necessary.
5.3.3 Hydraulically joining the interference fit

![Tapered interference fit diagram]

Fig. 4: Tapered interference fit

Key

1. Oil connection for radial pressure
2. Housing cover
3. Machine shaft
4. Hydraulic nut
5. Screw plug
6. Hub

- The interference fit is joined hydraulically in tapered connections only. Cylindrical interference fits and stepped cylindrical interference fits are joined thermally.

- Unless otherwise stipulated on the dimension sheet, use mineral oil for hydraulic joining.

Required tools:
- Suitable pneumatic pump or motor pump (pressurised oil device) for generating the radial pressure. If mating parts with more than one oil connection are used, then you will need a pump for every single connection.
- Suitable (hand operated) pump for generating the axial pressure.
- Hydraulic nut (4), if possible with sufficient stroke.
- Lifting tackle for holding the hub.
- Oil for generating pressure.

Required data:
- Required and maximum expansion pressure.
- Axial installation force.
- Pull up dimension (for tapered bore hole).

Please refer to the dimension sheet for the required data or contact the system planner or RENK AG (Rheine plant).

- Coat all joining surfaces with a thin film of oil.
- If it is not hot, push the hub or flange so far onto the shaft that the fitting surfaces adjoin each other without pressure.
● Measure and note down the resulting position (zero position) in relation to a reference edge. Select the reference edge such that the pull up dimension can also be measured after fitting.

DANGER

Risk of fatal injury due to the coupling elements bursting!

Hubs or flanges that have been expanded too far or fitted on too far can burst immediately or during later operation, and ejected coupling elements can lead to life threatening injuries.

● Do not exceed the maximum expansion pressure.
● Comply with the stipulated pull up dimension if tapered connections are used. Do not fit the hub or flange on too far.

● Install the hub or flange using a hydraulic fitting tool in accordance with the instructions of the tool manufacturer. The fitting tool must secure the hub or flange axially against slipping.

Recommendations for hydraulic installation using a hydraulic nut:

Proceed in a similar manner if you use a different fitting tool.

– Installation work should be carried out at room temperature if possible.
– The parts being joined together are to have the same temperature.
– Use a pump for every single oil connection if mating parts with more than one oil connection are used.
● Retract the hydraulic nut completely.
● Screw on the hydraulic nut and connect up the pump. Do not submit any pressure just yet.
● Unscrew the screw plugs out of the oil connections and connect up the pump or pumps.
● Apply about 50% of the required pressure to the hydraulic nut.
● Apply the radial expansion pressure stipulated in the dimension sheet to the pump or pumps in several steps. Where applicable, please contact RENK AG (Rheine plant) in the event of any missing data.

1st step: Apply 50% of the required pressure. Allow the pressure 10 minutes to take effect.

2nd step: Increase the pressure by 200 bar. Allow the pressure 2 minutes to take effect. Repeat the second step for as long as it takes until the required expansion pressure is reached.

● If pressurised oil assemblies are used without a sealing ring, only inject the pressurised oil until it escapes to the full extent on both sides of the hub or flange and the hub or flange "floats".

● If pressurised oil assemblies are used with a sealing ring, only inject the pressurised oil until it escapes to the full extent at the end of the shaft and the hub or flange "floats".

The oil outlet can be covered at the shaft end by the structural shape of the fitting tool used.

● Raise the axial pressure and use the hydraulic nut to fit the hub or the flange onto the shaft in the stipulated position. Continue to press the pressurised oil into the fitted joint.
● Continually check the maximum expansion pressure during the entire joining process and do not exceed that pressure.
● When the hub or the flange is in position, open the return valve on the pump in order to reduce the oil pressure in the fitted joint.
● Hold the oil pressure in the hydraulic nut for at least four hours.
• Remove the fitting tool when the oil pressure in the fitted joint is completely discharged.

• Measure the axial position for the hub or the flange and compare it with the specifications. If required, correct the axial position by pressing once more.

• Close the oil connections again.

• Install axial securing means. Suitable axial securing means, e.g. using a support plate, are constantly required in the event of a steep angle being used in the tapered connection (taper ratio less than 1:30).

NOTICE
Risk of damaging the coupling due to it being started up too early after the interference fit has been hydraulically joined!
Damage to and failure of the coupling is possible.

• Do not apply torque to the hydraulically joined interference fits until the pressurised oil film has been completely removed (after approx. eight hours).

5.4 Aligning the shafts

5.4.1 Shaft displacements

Fig. 5: Shaft displacements

Key
1 Axial offset
2 Radial offset
3 Angular offset
4 Radial and angular offset

Shaft displacements mostly generate a combination of axial, angular and radial offset, whereby the angular and the radial offset form the actual displacement in the coupling.

Shaft displacements are produced through errors in the alignment and by additional displacements arising during operation. These include thermal expansion, shaft deflection or shifting in the foundations.

The coupling is designed for displacements specified in the technical data (see chapter 12.1). The alignment values were substantially cut back in order to ensure reliable operation in the coupling. One third of the possible displacement in the coupling is achieved when the recommended alignment values are utilised. This means there are still enough reserves for additional displacements produced.
If the manufacturers of the machines being coupled stipulate different alignment values, it is essential that these are then taken into account. If displacements are known during operation, then take these into account during alignment such that the maximum permissible displacement taken from the technical data is not exceeded in any operating state.

Observe the following for aligning the shafts:
- Do not align the shafts until the hubs or flanges have been fitted and a suitable point in time is available for your coupling series (see chapter 5.5).
- If possible, also take into account the thermal expansions in the machines being coupled.
- Please refer to the technical data or the dimension drawing for the required data.
- Use suitable resources when performing alignment work, e.g. measuring gauges or optical equipment (lasers) for bridging large distances. We recommend alignment using laser technology.
- Observe possible alignment values specified in the dimension sheet. These have priority.

5.4.2 Minimum displacement

A slight displacement improves the lubrication of the toothing and increases the service life of the coupling. Movement in the toothing promotes the distribution of the lubricant. Precise shaft alignment to zero displacement prevents this movement from occurring.

Always align the shaft such that a minimum displacement is not fallen short of. This is assured if you do not fall below 50% of the recommended alignment.

It is practical to set up the minimum displacement such that it is not compensated by possible thermal expansion. Through a lateral offset in the shafts, for example.

5.4.3 Coupling with retaining ring

Couplings with a retaining ring have a limited axial clearance and are restricted in their ability to adjust shaft misalignments. You have to align these couplings precisely in order to ensure the reliability and performance.

The ability to adjust shaft misalignments is determined by the axial clearance a and b. The following values apply to the standard axial clearance a and b in accordance with the tables in Chapter 12.2. The alignment values are specified in the dimension sheet if reduced axial clearances are used.
5.4.4 Axial offset

![Axial offset diagram](image)

Key
- A: Flange diameter
- E: Shaft distance

The required shaft clearance can be found in the order confirmation, in the technical data or in the dimension sheet, if available.
- Align the shafts of the machines being connected to shaft distance \(E \), using a tolerance as set out in Chapter 5.4.7.

5.4.5 Radial offset

![Radial offset diagram](image)

Key
- \(l_0 \): Distance between tooth centres
- \(\Delta K_r \): Radial offset

The permissible radial offset \(\Delta K_r \) depends on the length and thus on the distance between tooth centres of the coupling.
5.4.6 Angular offset

Fig. 8: Gap using the hub as an example

Key

<table>
<thead>
<tr>
<th>y</th>
<th>Maximum gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>Minimum gap</td>
</tr>
<tr>
<td>D</td>
<td>Hub diameter</td>
</tr>
<tr>
<td>(\Delta K_w)</td>
<td>Angular offset</td>
</tr>
</tbody>
</table>

The angular offset \(\Delta K_w \) is derived from the gap y-z for the shafts and depends on the measured diameter D.

- Measure the gap for the hubs or flanges for at least four positions distributed evenly on the circumference.

The difference between the largest and smallest value produces the value y-z.

For couplings using flanges, replace the hub diameter D with flange diameter A (see Fig. 6).
5.4.7 Determining the recommended alignment values

<table>
<thead>
<tr>
<th>Size</th>
<th>Hub diameter D (mm)</th>
<th>Flange diameter A (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>60</td>
<td>118</td>
</tr>
<tr>
<td>48</td>
<td>77</td>
<td>145</td>
</tr>
<tr>
<td>60</td>
<td>90</td>
<td>165</td>
</tr>
<tr>
<td>70</td>
<td>112.5</td>
<td>200</td>
</tr>
<tr>
<td>80</td>
<td>128</td>
<td>220</td>
</tr>
<tr>
<td>90</td>
<td>145</td>
<td>240</td>
</tr>
<tr>
<td>100</td>
<td>160.5</td>
<td>270</td>
</tr>
<tr>
<td>110</td>
<td>176</td>
<td>280</td>
</tr>
<tr>
<td>125</td>
<td>200.5</td>
<td>310</td>
</tr>
<tr>
<td>140</td>
<td>224.5</td>
<td>340</td>
</tr>
<tr>
<td>160</td>
<td>256.5</td>
<td>390</td>
</tr>
<tr>
<td>180</td>
<td>288.5</td>
<td>435</td>
</tr>
<tr>
<td>200</td>
<td>320.5</td>
<td>480</td>
</tr>
<tr>
<td>225</td>
<td>362</td>
<td>545</td>
</tr>
<tr>
<td>250</td>
<td>400</td>
<td>580</td>
</tr>
<tr>
<td>265</td>
<td>440</td>
<td>645</td>
</tr>
<tr>
<td>280</td>
<td>460</td>
<td>680</td>
</tr>
<tr>
<td>315</td>
<td>510</td>
<td>745</td>
</tr>
<tr>
<td>335</td>
<td>535</td>
<td>775</td>
</tr>
<tr>
<td>355</td>
<td>580</td>
<td>825</td>
</tr>
<tr>
<td>375</td>
<td>620</td>
<td>915</td>
</tr>
</tbody>
</table>

Tab. 4: Data for determining the alignment values

Axial offset
- Coupling without retaining ring: Tolerance for dimension \(E \) = \(\pm 1 \) mm
- Coupling with retaining ring: Tolerance for dimension \(E \) = \(\pm 0.1 \) mm

Axial clearance factor
- Couplings without retaining ring: \(f_H = 1.0 \)
- Couplings with retaining ring: \(f_H = 0.8 \)

Radial offset
- \(\Delta K_r = l_0 \cdot 0.0022 \cdot f_H \) [mm]
Distance between tooth centres \(l_0 \) (see chapter 12.2)

Angular offset (gap)
- \(y-z = D \cdot 0.0022 \cdot f_H \) [mm]
- Couplings with flange: \(y-z = A \cdot 0.0022 \cdot f_H \) [mm]
5.4.8 Example of aligning the shaft

SRLk 110 coupling with a shaft clearance of E= 450 mm
Coupling with retaining ring \(f_H = 0.8 \)
Distance between tooth centres \(l_0 = E + 194 = 644 \) mm
Hub diameter \(D = 176 \) mm

Axial offset \(E = 450 \pm 0.1 \) mm
Radial offset \(\Delta K_r = (E + l_0) \cdot 0.0022 \cdot f_H \) \(\Delta K_r = 1.13 \) mm
Gap \(y-z = D \cdot 0.0022 \cdot f_H \) \(y-z = 0.31 \) mm

Minimum displacement \(\Delta K_{r\,\text{min}} = 0.5 \cdot \Delta K_r \) \(\Delta K_r = 0.57 \) mm

5.5 Installing the coupling halves (all couplings)

![Diagram of coupling halves](image)

Fig. 9: Installing the coupling halves

Key

1. Hexagon head bolt
2. Housing cover
3. Hub
4. Housing
5. O-ring
6. O-ring
7. O-ring

O-rings easily fall out of the grooves. Use a little lubricating grease at three or four places in the groove so that the O-ring remains stuck in.

Perform the following steps one after the other for the two coupling halves:
- Insert the O-ring (6) providing a seal between the housing cover (2) and hub (3) into the groove in the housing cover.
• Put on the O-ring (7) providing a seal between the housing cover and housing (4) over the teeth for the splined hub and insert it into the groove in the housing cover.

NOTICE

Risk of damaging the coupling due to insufficient lubrication!
The housing and hub toothing could wear out prematurely if the toothing is not adequately lubricated during assembly.
• Lubricate the coupling using a suitable lubricant and the stipulated quantity of lubricant prior to assembling the coupling halves.

Observe the stipulated amounts of lubricant and the recommended lubricants (see chapter 12.4).

• Divide the stipulated quantity of grease: two times 1/6 and one time 4/6.
• Coat the toothings for the housing and the hub for each coupling half using approx. 1/6 of the prescribed quantity of grease.
• Keep the remaining divided up quantity of grease (4/6) in a safe place.

Coupling with operating speed < (0.05 \cdot n_{max}):
(For n_{max}, see Chapter 12.2)
• Spread the entire quantity of grease evenly into the toothings of the housings and hubs.

• Engage the housing (4) in the toothing of the hub (3) and join it to the housing cover (2). Take care not to squash the O-ring (7) in doing so.
• Before screwing down the housing cover, check whether the housing can be freely moved in an axial direction.
• Screw the housing cover to the housing using hexagon head bolts (1) and tighten the hexagon head bolts in a crosswise sequence using the tightening torque given in Chapter 12.3.

NOTICE

Risk of damaging the coupling due to screws being torn off!
The required friction coefficient ($\mu = 0.14$) of the screws is changed owing to coating with grease, paste or similar.
• Only coat the screws with a thin film of lubricating oil. In doing so, never use grease, paste or similar that reduces friction. Observe the tightening torques for the screws.
5.6 Assembling the coupling (depending on series)

5.6.1 Basic version (SBk)

After you have installed and lubricated the coupling halves as described in Chapter 5.5:
- Align the shafts being coupled.
- Insert one O-ring (3) into the groove (2) for the O-ring in the housing.
- Carefully push the two housings together. Take care not to squash the O-ring in doing so.

After that, continue with Chapter 5.7.

5.6.2 Coupling with retaining ring (SBRk)

After you have installed and lubricated the coupling halves as described in Chapter 5.5:
- Align the shafts being coupled.
- Push the housing toward the machine so that the groove (6) is uncovered for the retaining ring.
- Coat the groove for the retaining ring in the hub using the lubricant.
- Insert two O-rings (3 and 4) into the grooves on the two housings.
- Insert the halves (1 and 5) of the retaining ring into the groove and push the housing over the retaining ring in order to fix the halves of the retaining ring in place.
- Carefully push the two housings together. Take care not to squash the O-rings in doing so.
 After that, continue with Chapter 5.7.

5.6.3 Coupling with spacer (SBLk)

![Diagram of SBLk and SRLk couplings]

Key

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Retaining ring, upper half *</td>
</tr>
<tr>
<td>2</td>
<td>O-ring</td>
</tr>
<tr>
<td>3</td>
<td>Spacer</td>
</tr>
<tr>
<td>4</td>
<td>O-ring</td>
</tr>
<tr>
<td>5</td>
<td>Retaining ring, lower half *</td>
</tr>
<tr>
<td>6</td>
<td>Groove for the retaining ring *</td>
</tr>
<tr>
<td>7</td>
<td>Groove for O-ring</td>
</tr>
</tbody>
</table>

* SRLk only

After you have installed and lubricated the coupling halves as described in Chapter 5.5:

- Align the shafts being coupled.
- Insert two O-rings (2 and 4) into the grooves on the two housings.
- Use suitable lifting tackle to position the spacer (3) between the two coupling halves. Observe the side designation of the components in doing so.
- Carefully push the two housings inwards onto the spacer. Take care not to squash the O-rings in doing so.
 After that, continue with Chapter 5.7.

5.6.4 Coupling with spacer and retaining ring (SRLk)

After you have installed and lubricated the coupling halves as described in Chapter 5.5:

- Align the shafts being coupled.
- Push the two housings toward the machine so that the grooves for the retaining rings are uncovered.
- Coat the grooves for the retaining rings in the hubs using the lubricant.
- Insert two O-rings (2 and 4) into the grooves on the two housings.
● Insert the two retaining ring halves into their respective groove and push the housing over the retaining ring in order to fix the halves of the retaining rings in place.
● Use suitable lifting tackle to position the spacer (3) between the two coupling halves. Observe the side designation of the components in doing so.
● Carefully push the two housings inwards onto the spacer. Take care not to squash the O-rings in doing so.

After that, continue with Chapter 5.7.

5.6.5 Coupling with intermediate shaft (SBGk)

After you have installed and lubricated the coupling halves as described in Chapter 5.5:
● Align the shafts being coupled.
● Insert two O-rings (4 and 9) into the grooves on the two housings.
● Use suitable lifting tackle to position the completely installed intermediate shaft (2) between the two flanges (1 and 5). Observe the side designation of the components in doing so.
● Carefully push the two housings outwards onto the flanges. Take care not to squash the O-rings in doing so.

After that, continue with Chapter 5.7.
5.6.6 Coupling with intermediate shaft and retaining ring (SRGk)

After you have installed and lubricated the coupling halves as described in Chapter 5.5:

- Align the shafts being coupled.
- Use suitable lifting tackle to position the completely installed intermediate shaft (2) between the two flanges (1 and 5). Observe the side designation of the components in doing so.
- Push the two housings further onto the intermediate shaft so that the groove (7) is uncovered for the retaining ring.
- Coat the grooves for the retaining rings in the hubs using the lubricant.
- Insert two O-rings (4 and 9) into the grooves on the two housings.
- Insert the two retaining ring halves into their respective groove and push the housing over the retaining ring in order to fix the halves of the retaining rings in place.
- Carefully push the two housings outwards onto the flanges. Take care not to squash the O-rings in doing so.

After that, continue with Chapter 5.7.
5.6.7 Couplings with brake disc (SBkD, SBkT)

Fig. 13: SBkD and SBkT couplings

Key

1. SBkT brake disc, offset
2. SBkT brake disc, straight
3. Housing
4. O-ring
5. O-ring
6. Groove for O-ring
7. SBkD brake disc

After you have installed and lubricated the coupling halves as described in Chapter 5.5:

- Push the two housings (3) as far as possible toward the machines being coupled.
- Push the brake disc (1, 2 or 7) between the two coupling halves and put it down on the back of a hub.
- Now you can align the two shafts being coupled.
- Insert the O-rings (4 and 5) into the grooves (6) on the two housings.
- Push the two housings and the brake disc carefully together. Take care not to squash the O-rings in doing so.

After that, continue with Chapter 5.7.
5.6.8 Electrically insulated coupling (all series ending with "i")

![Electrically insulated coupling diagram]

Key
1. Hexagon nut
2. Insulating disc
3. Insulating bush
4. Insulating washer
5. Washer
6. Fitted bolt

NOTICE
Risk of damaging the coupling due to welding!
The electrical insulation fails if insulating bushes or insulating discs are missing.
- Replace missing insulating bushes or insulating discs during assembly.

After you have installed and lubricated the coupling halves as described in Chapter 5.5:
- Align the two shafts being coupled.
- Check whether the insulating bushes (3) are inserted in all bore holes. Where applicable, reorder any missing insulating bushes at RENK AG (Rheine plant).
- Insert the O-rings into the grooves on the two housings.
- Position the insulating disc (2) between the two housings.
- Carefully push the two housings together. Take care not to squash the O-rings and the insulating disc.

After that, continue with Chapter 5.7.
5.7 Screwing together the coupling

NOTICE
Risk of damaging the coupling due to screws being torn off!
The required friction coefficient ($\mu = 0.14$) of the screws is changed owing to coating with grease, paste or similar.
- Only coat the screws with a thin film of lubricating oil. In doing so, never use grease, paste or similar that reduces friction. Observe the tightening torques for the screws.

NOTICE
Risk of damaging the coupling due to screws becoming undone!
The hexagon nuts lose their self-locking function after being undone several times.
- Replace the self-locking hexagon nuts at the latest after they have been undone five times.

5.7.1 Screwing together the coupling (not for series ending with "i")

- Turn the two coupling halves such that the markings are next to one another (e.g. "A0" and "B0"). The markings are attached to the outer diameters of the one housing and the other housing, or the outer diameters of the spacer or the flange (see Fig. 1 on Page 16).
- For spacer or intermediate shaft versions, connect the components with the markings "A0" to "A0" and "B0" to "B0".
- Insert the fitted bolts through the bore holes and tighten them in crosswise fashion using hexagon nuts. Observe the tightening torques specified in Chapter 12.3.

5.7.2 Screwing together electrically insulated coupling (all series ending with "i")

NOTICE
Risk of damaging the coupling due to welding!
The electrical insulation fails if the insulating washers are incorrect or not mounted.
- Observe the correct order for the washer and insulating washer.
- Observe the tightening torques for the fitted bolts in the insulating bushes.

- Turn the two coupling halves such that the markings are next to one another (e.g. "A0" and "B0"). The markings are attached to the outer diameters of the one housing and on the other housing, or on the spacer or the flange (see Fig. 1 on Page 16).
- For spacer or intermediate shaft versions, connect the components with the markings "A0" to "A0" and "B0" to "B0".
- Firstly, slide a washer (5) onto the fitted bolt (6).
- Then slide an insulating washer (4) onto the fitted bolt.
- Insert the fitted bolts prepared in this way through the bore holes and tighten them in crosswise fashion using hexagon nuts. In doing so, observe the reduced tightening torques specified in Chapter 12.3.2 for the fitted bolts in insulating bushes.
5.7.3 Tightening torques for large size couplings

If, through lack of space, it is not possible to tighten the fitted bolts in the larger couplings (M27 to M36 threads) using a torque wrench, then use the change in length when tightening in order to determine and comply with the specified tightening torque.

● Measure the total length of the fitted bolts prior to tightening.
● Then carefully tighten the fitted bolts and measure the change in length Δl several times.

If the changes in length Δl specified in Tab. 5 are reached, then the specified tightening torque has been reached (also see Chapter 12.3).

<table>
<thead>
<tr>
<th>Thread</th>
<th>Change in length Δl for the fitted bolts [mm]</th>
<th>Change in length Δl for the fitted bolts in insulating bushes [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 27</td>
<td>0.11 – 0.12</td>
<td>0.09 – 0.10</td>
</tr>
<tr>
<td>M 33</td>
<td>0.13 – 0.14</td>
<td>On request</td>
</tr>
<tr>
<td>M 36</td>
<td>0.15 – 0.16</td>
<td>On request</td>
</tr>
</tbody>
</table>

Tab. 5: Change in length Δl for the fitted bolts

5.8 Using distance plates

5.8.1 Distance plates on SB k series

![Fig. 15: Using distance plates – SBk series](image)

Key

1 Distance plates
2 Housing
3 Hub
4 Hexagon head bolt
5 Set screw

NOTICE

Risk of damaging the coupling due to slipping!

The distance plates could be overloaded during continuous operation and the coupling may get damaged.

● Only use the coupling with distance plates for short tests.
You can use distance plates (1) mounted on the coupling to test the motor or prime mover for a short period of time. The distance plates facilitate the axial and radial guide for the housing (2) if a processing machine is not coupled up.

- Screw the two distance plates on the opposite sides of the hub (3) down on the housing using two hexagon head bolts (4) on each. Observe the tightening torques specified in Chapter 12.3!
- Then screw the set screws (5) into the two distance plates and tighten them. Note here that the two distance plate segments are only roughly flush with the front of the hub. The bottom ends of the set screws must lie flat against the cylindrical area of the hub (compare Fig. 15).

5.8.2 Distance plates on SBRk and SRLk series (with retaining ring)

![Diagram of distance plates and housing](image)

Key

1. Distance plates
2. Housing
3. Hub
4. Groove
5. Hexagon head bolt

NOTICE

Risk of damaging the coupling due to slipping!

The distance plates could be overloaded during continuous operation and the coupling may get damaged.
- Only use the coupling with distance plates for short tests.

You can use distance plates (1) mounted on the coupling to test the motor or prime mover for a short period of time. The distance plates facilitate the axial and radial guide for the housing (2) if a processing machine is not coupled up.

- Push the two distance plates on the opposite sides of the hub (3) into the groove (4) in the hub and screw them down on the housing using two hexagon head bolts (5) respectively. Observe the tightening torques specified in Chapter 12.3!
6 Lubrication

DANGER
Risk of fatal injury due to a coupling that is not ready for operation!
Ejected coupling elements can lead to life threatening injuries. Insufficient lubrication can lead to overheating and failure in the coupling.
- Do not put the coupling into operation until it has been completely assembled and filled with lubricant, and all guards are ready for operation.

NOTICE
Risk of damaging the coupling due to insufficient lubrication!
The toothing can be destroyed if there is no lubrication or if an unsuitable lubrication is used.
- Always use the coupling with the appropriate lubrication and the stipulated amount of lubrication.
- Use lubricant to coat the toothing prior to joining the housings with the hubs, as described in Chapter 5.5.

The coupling may only be operated with lubricating grease. The maintenance interval depends on the lubricant selected (see chapter 9.2.1).
After installation or for each change of lubricant, the coupling needs to be filled with lubricant:
- Never start up the coupling without lubricant nor with too small an amount of lubricant.
- It is vital that the coupling be filled with lubricant as described in this manual.
- Observe the technical data and the details given in the dimension sheet (if supplied).
- Always use a suitable lubricant for the temperatures on site.

If spacers are used, then an additional amount of lubricant is only required if the spacer is not sealed by bottom parts.
All spacers with a length greater than 400 mm have bottom parts.

Observe the stipulated amounts of lubricant and the recommended lubricants (see chapter 12.4).
RENK Longlife Grease is particularly good for long-term lubrication. If the sealing for the coupling is intact, changing the grease will not be due until after 25,000 operating hours or five years – depending on which comes first.

- Rotate the coupling such that the screw plugs (1 and 2) for the coupling halves are aligned facing upwards.
- Undo the upper screw plugs and unscrew and remove them from the housing.
- Also unscrew and remove the second screw plug at the rear of the coupling housing respectively in order to prevent air overpressure.
- In each coupling half, use a grease injector or a cartridge of RENK Longlife Grease to inject half (2/6) of the prescribed quantity of grease (see chapter 5.5) previously divided up.
- Check the seals on the self-sealing screw plugs for damage and, if necessary, replace the screw plugs.
- Screw in the screw plugs again and tighten them using the tightening torque given in (see chapter 12.3).
7 Operation

<table>
<thead>
<tr>
<th>DANGER</th>
<th>Risk of fatal injury due to a coupling that is not ready for operation!</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ejected coupling elements can lead to life threatening injuries. Insufficient lubrication can lead to overheating and failure in the coupling.</td>
</tr>
<tr>
<td></td>
<td>● Do not put the coupling into operation until it has been completely assembled and filled with lubricant, and all guards are ready for operation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DANGER</th>
<th>Risk of fatal injury due to the coupling bursting!</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The ejection of coupling elements or the spurting of lubricants out of a bursting coupling could lead to potentially fatal injuries.</td>
</tr>
<tr>
<td></td>
<td>● If any changes emerge in the operational behaviour (e.g. noises or vibrations) or if the coupling is faulty, then shut down the coupling immediately and remedy the causes.</td>
</tr>
</tbody>
</table>
Detecting faults and troubleshooting

8 Detecting faults and troubleshooting

If the toothing is damaged, please always notify RENK AG (Rheine plant).

The coupling must run quietly and with low vibration in all operating phases. Any deviating behaviour is deemed as a malfunction and needs to be rectified immediately. When trying to find the fault, you always have to take both the coupling and the machines being coupled into consideration. The following malfunctions are only a selection of possible problems.

<table>
<thead>
<tr>
<th>Malfunction</th>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O-ring missing.</td>
<td>Insert O-ring.</td>
<td></td>
</tr>
<tr>
<td>O-ring defective.</td>
<td>Replace O-ring.</td>
<td></td>
</tr>
<tr>
<td>O-ring overheated when shrink fitting the hub.</td>
<td>Replace O-ring.</td>
<td></td>
</tr>
<tr>
<td>Too much lubricant due to regreasing - with too much lubricant - between the maintenance intervals.</td>
<td>Correct the amount of lubricant. Only regrease the coupling after large leaks or during maintenance.</td>
<td></td>
</tr>
<tr>
<td>Sealing surface of hub back damaged.</td>
<td>Straighten out minor damage to the sealing surface.</td>
<td>If the damage is severe, replace the hub.</td>
</tr>
<tr>
<td>Screw plug has a leak.</td>
<td>Check the tightening torque.</td>
<td>Check the seal on the screw plug and replace it if necessary. Check the sealing surface and straighten out, if necessary.</td>
</tr>
<tr>
<td>Leak at the fitting key groove.</td>
<td>Seal the fitting key groove.</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 6: Detecting faults and troubleshooting
Malfunction
Vibrations or noises.

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tooothing worn.</td>
<td>Replace the toothed components.</td>
</tr>
<tr>
<td>Unbalance.</td>
<td>Check the coupling and correct the unbalance.</td>
</tr>
<tr>
<td>Displacement too great.</td>
<td>Check the alignment and correct it, if necessary.</td>
</tr>
</tbody>
</table>

Malfunction
Tooth flanks damaged.

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lubricant used up.</td>
<td>Replace the lubricant.</td>
</tr>
<tr>
<td></td>
<td>Observe the maintenance intervals.</td>
</tr>
<tr>
<td>Incorrect lubricant.</td>
<td>Use a lubricant as per lubricant recommendation.</td>
</tr>
<tr>
<td>Too little lubricant.</td>
<td>Correct the amount of lubricant.</td>
</tr>
<tr>
<td>Incorrect installation.</td>
<td>Coat the toothing with lubricant prior to installing the housings.</td>
</tr>
<tr>
<td>Vibrations in the drive train.</td>
<td>Determine the cause of the vibrations and reduce them.</td>
</tr>
<tr>
<td>Displacement too great.</td>
<td>Check the alignment.</td>
</tr>
<tr>
<td>Unacceptably high system torque.</td>
<td>Reduce the system torque. Check the system.</td>
</tr>
</tbody>
</table>

Tab. 7: Detecting faults and troubleshooting (continued)
9 Servicing

⚠️ DANGER ⚠️
Risk of fatal injury due to unintended rotary motion of the machine parts!
Coupling elements or tools ejected from the machine, and being caught up by rotating machine parts can lead to fatal injuries.
- Switch off the engaged machinery train for all work and secure the control devices against unwanted activation.

⚠️ DANGER ⚠️
Risk of fatal injury due to the coupling or machine parts still running for some time after the drive has been shut down!
Fatal injuries or loss of limbs are possible.
- Before removing the guard, wait for the coupling and adjacent machine parts to come to a standstill.

⚠️ CAUTION ⚠️
Risk of burns due to heated coupling or components!
Components or lubricants can cause burns.
- Before starting work, allow the coupling and adjacent machine parts enough time to cool down.
- Wear suitable protective clothing.

⚠️ DANGER ⚠️
Risk of fatal injury due to a coupling that is not ready for operation!
Ejected coupling elements can lead to life threatening injuries. Insufficient lubrication can lead to overheating and failure in the coupling.
- Do not put the coupling into operation until it has been completely assembled and filled with lubricant, and all guards are ready for operation.

⚠️ NOTICE ⚠️
Risk of damaging the coupling due to screws becoming undone!
The hexagon nuts lose their self-locking function after being undone several times.
- Replace the self-locking hexagon nuts at the latest after they have been undone five times.
9.1 Checking the condition

DANGER

Risk of fatal injury due to fire or explosion!
Insufficient lubrication can lead to overheating and failure in the coupling.

- If possible, check the coupling every four weeks for leaks, but certainly no later than three months.
- Check the coupling for external damage and missing parts, e.g. screws.
- If leaks occur, shut down the coupling, replace the O-rings and regrease the coupling in the event of large leaks.

DANGER

Risk of fatal injury due to the coupling bursting!
The ejection of coupling elements or the spurting of lubricants out of a bursting coupling could lead to potentially fatal injuries.

- If any changes emerge in the operational behaviour (e.g. noises or vibrations) or if the coupling is faulty, then shut down the coupling immediately and remedy the causes.

- Please pay careful attention to the operating behaviour when using the coupling:
 - Vibrations.
 - Noises.
 - Changes in the noise level.

9.2 Maintenance

9.2.1 Changing the lubricant

The coupling may only be operated with lubricating grease. The maintenance interval depends on the selected lubricant and in accordance with the specified operating hours or years reached, depending on which comes first.

<table>
<thead>
<tr>
<th>Lubricant</th>
<th>Maintenance interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral lubricant</td>
<td>8000 h or 2 years</td>
</tr>
<tr>
<td>Synthetic lubricant</td>
<td>16.000 h or 3 years</td>
</tr>
<tr>
<td>RENK Longlife Grease</td>
<td>25.000 h or 5 years</td>
</tr>
</tbody>
</table>

Tab. 8: Lubricants and maintenance intervals

9.2.2 Changing the lubricating grease

- Remove the guard.
- Remove the coupling cover.
- Make sure that the housings can be moved axially by several millimetres (only if retaining ring type less than 1 mm is used).
- Continue to disassemble the coupling as described in Chapter 10.1.
● Wash all coupling elements using solvent-free cleaning agents. Remove lubricant residues and dirt as much as possible from the interior. Collect the cleaning agents and lubricant residues and dispose of them properly.
● Dispose of the waste lubricants and cleaning agents in accordance with the national regulations applicable at the operating site.
● Check the coupling teeth for damage. In the event of any damage, please contact RENK AG (Rheine plant).
● Check the O-rings and immediately replace damaged O-rings. Replace all O-rings after five years at the latest!
● Check all sealing surfaces for damage and straighten them out, if necessary.
● Check the alignment of the machines towards one another and realign, if necessary.
● Lubricate the toothing and install the coupling as described in Chapter 5.5 and Chapter 5.6.

9.3 Ordering spare parts

All spare parts must comply with the technical requirements defined by RENK AG (Rheine plant). This is always assured when the parts used are original spare parts from RENK AG (Rheine plant).
Only use original spare parts from RENK AG (Rheine plant) as replacements for supplied parts.
Specify the following when ordering spare parts:
– RENK order number (matching the label on the largest outer diameter on the coupling, see Fig. 1 on Page 16).
– Part name.
– Part number (matching the dimension sheet or the technical data).
– Size of the part (if known).
– Required quantity.

The contact address can be found on the back cover of this manual.
10 Disassembly

DANGER Risk of fatal injury due to unintended rotary motion of the machine parts!
Coupling elements or tools ejected from the machine, and being caught up by rotating machine parts can lead to fatal injuries.
- Switch off the engaged machinery train for all work and secure the control devices against unwanted activation.

DANGER Risk of fatal injury due to the coupling or machine parts still running for some time after the drive has been shut down!
Fatal injuries or loss of limbs are possible.
- Before removing the guard, wait for the coupling and adjacent machine parts to come to a standstill.

CAUTION Risk of burns due to heated coupling or components!
Components or lubricants can cause burns.
- Before starting work, allow the coupling and adjacent machine parts enough time to cool down.
- Wear suitable protective clothing.
10.1 Disassembling the coupling

10.1.1 Disassembling the coupling without an intermediate shaft or spacer

CAUTION

Risk of injury due to falling retaining ring or brake disc!

If a coupling with a retaining ring or brake disc is used, then the retaining ring and, if applicable, the brake disc can fall to the floor when being extracted and result in injuries.

- Take care to ensure that the retaining ring and, if applicable, the brake disc do not fall to the floor when being extracted.

- Remove the guard, if necessary.
- Undo the hexagon nuts and unscrew them from the fitted bolts.
- Replace the hexagon nuts after they have been undone five times!
- Screw the forcing screws into the threaded extraction holes in the flanges for the housings and separate the parts from one another in doing so.
- Collect the escaping lubricants and dispose of them properly.
- Move the machines away from each other.
- Unscrew the housing cover and remove it from the housing.
- Pull the housing off the hub.

10.1.2 Disassembling the coupling with an intermediate shaft or spacer

CAUTION

Risk of injury due to falling retaining ring or brake disc!

If a coupling with a retaining ring or brake disc is used, then the retaining ring and, if applicable, the brake disc can fall to the floor when being extracted and result in injuries.

- Take care to ensure that the retaining ring and, if applicable, the brake disc do not fall to the floor when being extracted.

- Remove the guard, if necessary.
- Undo the hexagon nuts and unscrew them from the fitted bolts.
- Replace the hexagon nuts after they have been undone five times!
- Secure the spacer or intermediate shaft against being dropped.
- Screw the forcing screws into the threaded extraction holes in the flanges for the housings and separate the parts from one another in doing so.
- Collect the escaping lubricants and dispose of them properly.
- Remove the intermediate shaft or spacer.
- Unscrew the housing cover and remove it from the housing.
- Pull the housing off the hub.
10.2 Pulling off the hubs or flanges

If it is necessary to pull the hub or flange off one of the shafts, then proceed in accordance with the withdrawal method suited to the respective connection between shaft and hub, or flange.

10.2.1 Key connection or splines in accordance with DIN 5480

You will need a suitable mechanical detaching device for doing the pulling off. Work quickly so that the shaft does not heat up too much.

⚠️ CAUTION

Risk of burns due to heated device or components!

Burns on parts of the body are possible.

- Wear suitable protective clothing.

- Evenly heat the hub all around using a suitable device (e.g. burner or inductively) up to a temperature of 80 °C. Observe the instructions from the device manufacturer in doing so.

- Remove the heated hub or flange from the shaft (and at the same time secure the hub or flange against dropping) using a detaching device in accordance with the instructions from the detaching device manufacturer.
10.2.2 Tapered interference fit

If press fits are used, remove the hub or flange using a suitable hydraulic detaching device and a pressurised oil device.

![Diagram of tapered interference fit]

Fig. 18: Tapered interference fit

Key

1 Oil connection for radial pressure
2 Housing cover
3 Machine shaft
4 Hydraulic nut
5 Screw plug
6 Hub

Required tools:

- Suitable pneumatic pump or motor pump (pressurised oil device) for generating the radial pressure. If mating parts with more than one oil connection are used, then you will need a pump for every single connection.
- Suitable (hand operated) pump for generating the axial pressure.
- Hydraulic nut (4), if possible with sufficient stroke.
- Lifting tackle for holding the hub.
- Oil for generating pressure.

Required data:

- Required and maximum expansion pressure.

Please refer to the dimension sheet for the required data or contact the system planner or RENK AG (Rheine plant).

DANGER

Risk of injury due to sudden release of the press fit!

When being removed, the hub or flange can be released very suddenly from the shaft and lead to injuries!

- Secure the hub or flange axially during removal.
- Under no circumstances should anyone be standing in front of the hub in the direction in which the hub is being released during removal.
DANGER

Risk of fatal injury due to the coupling elements bursting!

Hubs or flanges that have been expanded too far or fitted on too far can burst immediately or when being removed, and ejected coupling elements can lead to life threatening injuries.

- Do not exceed the maximum expansion pressure.
- Remove the coupling elements carefully.

- Mount and operate the hydraulic detaching device and the associated pressurised oil device in accordance with the manufacturer's instructions.

Recommendations for hydraulic removal using a hydraulic nut: Proceed in a similar manner if you use a different fitting tool.

- Remove the shaft nut.
- Extend the hydraulic nut to its maximum and observe the permissible piston stroke in doing so.
- Screw on the hydraulic nut.
- Unscrew the screw plugs out of the oil connections and connect up the pump or pumps.
- Secure the hub or flange against dropping.
- Apply full pressure to the hydraulic nut.
- Apply the radial expansion pressure stipulated in the dimension sheet to the pump or pumps.
 1st step: 50% of the required pressure, allow 10 minutes to take effect
 2nd step: Increase the pressure by 200 bar. Allow the pressure 2 minutes to take effect.
 Repeat the second step for as long as it takes until the required expansion pressure is reached.
- If pressurised oil assemblies are used without a sealing ring, only inject the pressurised oil until it escapes to the full extent on both sides of the hub or flange and the hub or flange "floats".
- If pressurised oil assemblies are used with a sealing ring, only inject the pressurised oil until it escapes to the full extent at the end of the shaft and the hub or flange "floats".

The oil outlet can be covered at the shaft end by the structural shape of the fitting tool used.

- Slowly release the pressure in the hydraulic nut and allow the hub or flange to slide from the shaft.

If the pull up dimension is greater than the hydraulic nut stroke:

- Push on the hub or flange by a further 1 to 2 mm.
- Release the expansion pressure.
- Release the pressure in the hydraulic nut.
- Wait approx. two to three hours so that the radial pressure can reduce fully.
- Turn the hydraulic nut back as far as is required.
- Apply full pressure to the hydraulic nut.
- Continue with removal.
If the hub or flange does not release when the maximum expansion pressure is fully exhausted:
- Use oil with a higher viscosity (ISO VG 220).
- Allow the interference fit to be pressurised for one hour.
- Attempt removal once again.

If the hub or flange still cannot be released:
- Increase the maximum pressure by 5%.
- Attempt removal once again.

After the hub or flange has been released:
- Release the pressure from the two pumps.
- Unscrew the hydraulic nut.
- Remove the oil pipes.
- Pull the hub or the flange carefully down from the shaft so as not to damage the surfaces of the shaft.
- Set down the hub or flange.
- Examine the parts for any damage. Straighten out any minor damage. In the event of any serious damage, please contact RENK AG (Rheine plant).
- Protect the hub or flange bore and shaft against corrosion.
- Screw the screw plugs into the oil connections.
10.2.3 Cylindrical or stepped cylindrical interference fit

If cylindrical or stepped press fits are used, remove the hub or flange using a hydraulic detaching device and pressurised oil device.

![Diagram of Cylindrical Interference Fit](image)

Fig. 19: Cylindrical interference fit (example)

Key

1. Machine shaft
2. Housing cover
3. Oil connection 1 for radial pressure
4. Threaded rod
5. Stop plate
6. Retaining plate
7. Hydraulic cylinder
8. Threaded rod
9. Hub
10. Oil connection 2 for radial pressure

Required tools:

- Suitable pneumatic pump or motor pump (pressurised oil device) for generating the radial pressure. If mating parts with more than one oil connection are used (3 or 10), then you will need a pump for every single connection.
- Suitable (hand operated) pump for generating the axial pressure.
- Hydraulic cylinder (7).
- Detaching device, e.g. consisting of a retaining plate (6) and threaded rods (4 and 8) needing to be of the correct size for the axial force required.

Only for stepped cylindrical interference fit:
- Stop plate (5) with threaded rod screwed into the shaft.
- Lifting tackle for holding the hub and detaching device.
- Oil for generating pressure.

Required data:

- Required and maximum expansion pressure.
- Required axial removal force.

Please refer to the dimension sheet for the required data or contact the system planner or RENK AG (Rheine plant).
DANGER Risk of injury due to sudden release of the press fit!
When being removed, the hub or flange can be released very suddenly from the shaft and lead to injuries!
- Secure the hub or flange axially during removal.
- Under no circumstances should anyone be standing in front of the hub in the direction in which the hub is being released during removal.

DANGER Risk of fatal injury due to the coupling elements bursting!
Hubs or flanges that have been expanded too far or fitted on too far can burst immediately or when being removed, and ejected coupling elements can lead to life threatening injuries.
- Do not exceed the maximum expansion pressure.
- Remove the coupling elements carefully.

NOTICE Risk of damaging the shaft and hub or flange, due to tilting!
The hub or flange could tilt on the shaft if you stop pulling it off and leave it in position.
- Pull the hub or flange off evenly and in one go.
● Mount and operate the detaching device and the associated pressurised oil device in accordance with the manufacturer’s instructions.

For stepped cylindrical interference fit:
● Install the stop plate (5). There has to be a little more than half the length of a hub in space between the retaining plate and stop.

![Diagram](image)

Fig. 20: Detaching intervals

Key
1 Hub
2 Oil groove
3 Shaft

If the stroke of the hydraulic cylinder does not suffice for removing the hub (1) completely from the shaft (3) in one go, then select the position for readjustment such that the shaft end is centred \((a = b)\) between two oil grooves (2).

Wait enough time prior to readjustment (approx. two to three hours) until the radial pressure has dropped completely.

Recommendations for hydraulic removal:
● Secure the hub, detaching device and hydraulic cylinder against dropping.
● Unscrew the screw plugs out of the oil connections and connect up the pump or pumps.
● Apply the radial expansion pressure given in the dimension sheet to the pump.
 1st step: 50% of the required pressure, allow 10 minutes to take effect
 2. step: Increase the pressure by 200 bar. Allow the pressure 2 minutes to take effect.
 Repeat the second step for as long as it takes until the required expansion pressure is reached.
● If pressurised oil assemblies are used without a sealing ring, only inject the pressurised oil until it escapes to the full extent on both sides of the hub or flange and the hub or flange "floats".
● If pressurised oil assemblies are used with a sealing ring, only inject the pressurised oil until it escapes to the full extent at the end of the shaft and the hub or flange "floats".

The oil outlet can be covered at the shaft end by the structural shape of the fitting tool used.

If a stepped cylindrical interference fit is used, the hub or the flange can automatically be released very suddenly after the required expansion pressure has been reached.
● Apply pressure to the hydraulic cylinder.
● Remove the hub, using readjustment if necessary.
If the hub or flange does not release when the maximum expansion pressure is fully exhausted:

- Use oil with a higher viscosity (ISO VG 220).
- Allow the interference fit to be pressurised for one hour.
- Attempt removal once again.

If the hub or flange still cannot be released:

- Increase the maximum pressure by 5%.
- Attempt removal once again.

After the hub or flange has been released:

- Release the pressure from the two pumps.
- Set down the hub or flange.
- Remove the oil pipes.
- Dismount the detaching device.
- Examine the parts for any damage. Straighten out any minor damage. In the event of any serious damage, please contact RENK AG (Rheine plant).
- Protect the hub or flange bore and shaft against corrosion.
- Screw the screw plugs into the oil connections.
11 Disposal

- Degrease and clean the machine parts prior to disposal.
- Dispose of the components separately, according to material groups.
- When machine parts need to be serviced, dispose of the cleaning agents and lubricants in accordance with the national regulations applicable to the operating site.

12 Technical data

The technical data for the couplings vary greatly according to the series and the order.

- Please refer to the dimension sheet (if supplied) or this operation manual for your coupling’s technical data.
- Before commencing work, please contact RENK AG (Rheine plant) for more information in the event of missing or unclear technical data.

In couplings larger than 375, one order-specific dimension sheet is always created which you can refer to for the technical data.

12.1 General data

<table>
<thead>
<tr>
<th>Permissible angular offset</th>
<th>Coupling without retaining ring</th>
<th>+/- 0.75 degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupling with retaining ring(^1)</td>
<td>+/- 0.6 degrees</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Valid for axial clearances as set out in the dimension lists below.

Tab. 9: Angular offset for couplings with and without a retaining ring

The angular offset and the radial offset must not occur to the full amount at the same time.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Symbol</th>
<th>Unit</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal power of coupling</td>
<td>(P_{KN})</td>
<td>kW</td>
<td>(T_{KN} = 9550 \cdot P_{KN}/n)</td>
</tr>
<tr>
<td>Speed</td>
<td>n</td>
<td>rpm</td>
<td></td>
</tr>
<tr>
<td>Nominal torque of coupling</td>
<td>(T_{KN})</td>
<td>Nm</td>
<td>(= 1.5 \cdot T_{KN}) (for 10(^8) load cycles)</td>
</tr>
<tr>
<td>Perm. coupling peak torque</td>
<td>(T_{KP})</td>
<td>Nm</td>
<td>(= 3.0 \cdot T_{KN}) (for 10(^3) load cycles)</td>
</tr>
<tr>
<td>Perm. coupling momentary torque</td>
<td>(T_{Kmax})</td>
<td>Nm</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 10: Power and torques
12.2 Figures with dimensions

12.2.1 Dimensions for the SBk coupling

<table>
<thead>
<tr>
<th>Size</th>
<th>Nominal torque P_{\text{in}} (kNm)</th>
<th>Speed n_{\text{max}} (rpm)</th>
<th>Bore hole d_{1;2} (mm)</th>
<th>Dimensions</th>
<th>Max. static radial displacement \Delta \Delta \Delta r_{\text{max}} (mm)</th>
<th>Mass moment of inertia \Delta K_{\text{ax}} (kgm^2)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>0.95</td>
<td>7500</td>
<td>12 46</td>
<td>118 32 115 20 60 5 17 9 60 5 17 77</td>
<td>1.01 0.007 4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>2.1</td>
<td>6900</td>
<td>22 59</td>
<td>145 115 135 70 5 26 47 100 77 5 26 96</td>
<td>1.26 0.018 8.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>3.5</td>
<td>6300</td>
<td>22 69</td>
<td>165 135 155 80 6 33 60 110 90 5.5 32.5 113</td>
<td>1.50 0.036 11.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>5.9</td>
<td>5900</td>
<td>28 85</td>
<td>200 160 178 90 6 42 78 120 112.5 4 40 132</td>
<td>1.73 0.087 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>9</td>
<td>5400</td>
<td>28 98</td>
<td>220 178 198 100 6 48 90 130 128 4 46 148</td>
<td>1.95 0.146 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>13</td>
<td>5000</td>
<td>32 110</td>
<td>240 196 218 110 8 56 104 140 145 5 53 166</td>
<td>2.25 0.22 33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>18</td>
<td>4700</td>
<td>32 123</td>
<td>270 225 244 125 8 59 110 150 160.5 7 58 184</td>
<td>2.40 0.42 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>23</td>
<td>4300</td>
<td>55 135</td>
<td>280 240 264 140 8 62 116 170 176 12 66 202</td>
<td>2.70 0.55 59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>30.5</td>
<td>4000</td>
<td>65 150</td>
<td>310 265 284 150 10 68 126 180 200.5 13 71 218</td>
<td>2.85 0.91 78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>42</td>
<td>3700</td>
<td>75 170</td>
<td>340 295 330 170 10 80 150 200 224.5 10 80 250</td>
<td>3.30 1.58 111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>61</td>
<td>3400</td>
<td>85 195</td>
<td>390 325 360 190 12 84 156 230 256.5 16 88 274</td>
<td>3.60 2.78 154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>90</td>
<td>3100</td>
<td>120 220</td>
<td>435 370 416 220 12 100 188 260 288.5 18 106 320</td>
<td>4.20 4.96 218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>130</td>
<td>2900</td>
<td>140 245</td>
<td>480 415 476 250 14 116 218 300 320.5 19 121 366</td>
<td>4.80 8.4 305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>189</td>
<td>2700</td>
<td>160 275</td>
<td>545 465 532 280 16 128 240 330 362 22 134 408</td>
<td>5.40 15.6 445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>245</td>
<td>2400</td>
<td>160 305</td>
<td>580 510 556 300 20 152 284 350 400 32 164 452</td>
<td>6.00 21.8 550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>330</td>
<td>2200</td>
<td>180 335</td>
<td>645 560 600 330 20 154 288 380 440 40 174 484</td>
<td>6.30 34 735</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>390</td>
<td>2100</td>
<td>200 350</td>
<td>680 595 640 330 20 194 368 380 460 20 194 524</td>
<td>6.75 45.5 850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>335</td>
<td>580</td>
<td>1900</td>
<td>240 410</td>
<td>775 675 744 380 20 221 422 440 535 18 219 601</td>
<td>7.50 88 1275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>355</td>
<td>740</td>
<td>1800</td>
<td>260 440</td>
<td>825 725 786 400 25 234 443 460 580 19.5 228.5 634</td>
<td>8.25 127 1530</td>
<td></td>
<td></td>
</tr>
<tr>
<td>375</td>
<td>950</td>
<td>1700</td>
<td>280 470</td>
<td>915 795 808 420 25 221 417 480 620 28.5 224.5 641</td>
<td>8.25 192 1920</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Relating to a permissible angular displacement of \Delta K_{\text{ax}} = 0.75° for each coupling half.
2) Values for the complete coupling for bore d_{1;2} max.
3) The dismounting dimension F is required for the vertical installation and removal of the machine and for changing the O-rings.
Dimensions for the SBRk coupling

<table>
<thead>
<tr>
<th>Size</th>
<th>Nominal torque T_{KN}</th>
<th>Speed n_{max}</th>
<th>Bore hole d_1; d_2</th>
<th>Dimensions</th>
<th>Mass moment of inertia I (kgm²)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>0.95 kNm</td>
<td>7500 rpm</td>
<td>12; 40</td>
<td>A 118; B 92; C 117</td>
<td>0.5 kgm²</td>
<td>5.1 kg</td>
</tr>
<tr>
<td>46</td>
<td>2.1 kNm</td>
<td>6900 rpm</td>
<td>22; 54</td>
<td>145; 115; 136; 70</td>
<td>0.5 kgm²</td>
<td>9 kg</td>
</tr>
<tr>
<td>60</td>
<td>3.5 kNm</td>
<td>6300 rpm</td>
<td>22; 63</td>
<td>165; 135; 158; 80</td>
<td>0.5 kgm²</td>
<td>12.8 kg</td>
</tr>
<tr>
<td>70</td>
<td>5.9 kNm</td>
<td>5900 rpm</td>
<td>28; 78</td>
<td>200; 160; 181; 90</td>
<td>0.5 kgm²</td>
<td>22 kg</td>
</tr>
<tr>
<td>80</td>
<td>9 kNm</td>
<td>5400 rpm</td>
<td>28; 85</td>
<td>220; 178; 203; 100</td>
<td>0.5 kgm²</td>
<td>29 kg</td>
</tr>
<tr>
<td>90</td>
<td>13 kNm</td>
<td>5000 rpm</td>
<td>32; 100</td>
<td>240; 196; 223; 110</td>
<td>0.5 kgm²</td>
<td>37 kg</td>
</tr>
<tr>
<td>100</td>
<td>18 kNm</td>
<td>4700 rpm</td>
<td>32; 108</td>
<td>270; 225; 249; 125</td>
<td>0.5 kgm²</td>
<td>55 kg</td>
</tr>
<tr>
<td>110</td>
<td>23 kNm</td>
<td>4300 rpm</td>
<td>55; 120</td>
<td>280; 240; 269; 140</td>
<td>0.5 kgm²</td>
<td>65 kg</td>
</tr>
<tr>
<td>125</td>
<td>30.5 kNm</td>
<td>4000 rpm</td>
<td>65; 135</td>
<td>310; 265; 290; 150</td>
<td>0.5 kgm²</td>
<td>86 kg</td>
</tr>
<tr>
<td>140</td>
<td>42 kNm</td>
<td>3700 rpm</td>
<td>75; 150</td>
<td>340; 295; 335; 170</td>
<td>1.83 kgm²</td>
<td>119 kg</td>
</tr>
<tr>
<td>160</td>
<td>61 kNm</td>
<td>3400 rpm</td>
<td>85; 175</td>
<td>390; 325; 365; 190</td>
<td>3.12 kgm²</td>
<td>167 kg</td>
</tr>
<tr>
<td>180</td>
<td>90 kNm</td>
<td>3100 rpm</td>
<td>120; 200</td>
<td>435; 370; 422; 220</td>
<td>5.75 kgm²</td>
<td>243 kg</td>
</tr>
<tr>
<td>200</td>
<td>130 kNm</td>
<td>2900 rpm</td>
<td>140; 225</td>
<td>480; 415; 482; 250</td>
<td>9.6 kgm²</td>
<td>337 kg</td>
</tr>
<tr>
<td>225</td>
<td>189 kNm</td>
<td>2700 rpm</td>
<td>160; 260</td>
<td>545; 465; 539; 280</td>
<td>17.6 kgm²</td>
<td>475 kg</td>
</tr>
</tbody>
</table>

1) With these axial clearances, the permissible angular displacement ΔK_w perm. = 0.6° for each coupling half.
2) Values for the complete coupling for bore d_1; d_2 max.
3) The dismounting dimension F is required for the vertical installation and removal of the machine and for changing the O-rings.
12.2.3 Dimensions for the SBLk coupling

![Diagram of the SBLk coupling with dimensions labeled]

Technical Data

<table>
<thead>
<tr>
<th>Size</th>
<th>Nominal Torque T_{NN} kNm</th>
<th>Speed n_{max} rpm</th>
<th>Bore hole d_1, d_2 min</th>
<th>Dimensions</th>
<th>Mass Moment of Inertia I_{L} kgm²</th>
<th>Weight W kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>38</td>
<td>0.95</td>
<td>7500</td>
<td>12 46</td>
<td>118 92</td>
<td>58.5</td>
<td>60 90</td>
</tr>
<tr>
<td>48</td>
<td>2.1</td>
<td>6900</td>
<td>22 59</td>
<td>145 115 72</td>
<td>70 100</td>
<td>77 26 28</td>
</tr>
<tr>
<td>60</td>
<td>3.5</td>
<td>6300</td>
<td>22 69</td>
<td>165 135 82</td>
<td>80 110</td>
<td>90 32.5 34.5</td>
</tr>
<tr>
<td>70</td>
<td>5.9</td>
<td>5900</td>
<td>28 85</td>
<td>200 160 94.5</td>
<td>90 120</td>
<td>112.5 40 44.5</td>
</tr>
<tr>
<td>80</td>
<td>9</td>
<td>5400</td>
<td>28 98</td>
<td>220 178 105</td>
<td>100 130</td>
<td>128.5 46 51</td>
</tr>
<tr>
<td>90</td>
<td>13</td>
<td>5000</td>
<td>32 110</td>
<td>240 196 115</td>
<td>110 140</td>
<td>145 53 58</td>
</tr>
<tr>
<td>100</td>
<td>18</td>
<td>4700</td>
<td>32 123</td>
<td>270 225 130</td>
<td>125 150</td>
<td>160.5 58 63</td>
</tr>
<tr>
<td>110</td>
<td>23</td>
<td>4300</td>
<td>55 135</td>
<td>280 240 140</td>
<td>140 170</td>
<td>176 66 66</td>
</tr>
<tr>
<td>125</td>
<td>30.5</td>
<td>4000</td>
<td>65 150</td>
<td>310 265 150</td>
<td>150 180</td>
<td>200.5 71 71</td>
</tr>
<tr>
<td>140</td>
<td>42</td>
<td>3700</td>
<td>75 170</td>
<td>340 295 175</td>
<td>170 200</td>
<td>224.5 80 85</td>
</tr>
<tr>
<td>160</td>
<td>61</td>
<td>3400</td>
<td>85 195</td>
<td>390 325 190</td>
<td>190 230</td>
<td>256.5 88 88</td>
</tr>
<tr>
<td>180</td>
<td>90</td>
<td>3100</td>
<td>120 220</td>
<td>435 370 219</td>
<td>220 260</td>
<td>288.5 106 105</td>
</tr>
<tr>
<td>200</td>
<td>130</td>
<td>2900</td>
<td>140 245</td>
<td>480 415 249</td>
<td>250 300</td>
<td>320.5 121 120</td>
</tr>
<tr>
<td>225</td>
<td>189</td>
<td>2700</td>
<td>160 275</td>
<td>545 465 279</td>
<td>280 330</td>
<td>362 134 133</td>
</tr>
<tr>
<td>250</td>
<td>245</td>
<td>2400</td>
<td>160 305</td>
<td>580 510 282</td>
<td>300 350</td>
<td>400 164 146</td>
</tr>
<tr>
<td>265</td>
<td>330</td>
<td>2200</td>
<td>180 335</td>
<td>645 560 304</td>
<td>330 380</td>
<td>440 174 148</td>
</tr>
<tr>
<td>280</td>
<td>390</td>
<td>2100</td>
<td>200 350</td>
<td>680 595 324</td>
<td>330 380</td>
<td>460 194 188</td>
</tr>
<tr>
<td>335</td>
<td>580</td>
<td>1900</td>
<td>240 410</td>
<td>775 675 377</td>
<td>380 440</td>
<td>535 219 216</td>
</tr>
<tr>
<td>355</td>
<td>740</td>
<td>1800</td>
<td>260 440</td>
<td>825 725 398</td>
<td>400 460</td>
<td>580 228.5 226.5</td>
</tr>
<tr>
<td>375</td>
<td>950</td>
<td>1700</td>
<td>280 470</td>
<td>915 795 410</td>
<td>420 480</td>
<td>620 224.5 214.5</td>
</tr>
</tbody>
</table>

1) Values for the complete coupling, without spacer, for bore $d_1; d_2$ max.
2) The dismantling dimension F is required to change the O-rings.
A different hub layout is possible. See SBk.
12.2.4 Dimensions for the SRLk coupling

<table>
<thead>
<tr>
<th>Size</th>
<th>Nominal torque</th>
<th>Speed (n_{\text{max}}) rpm</th>
<th>Bore hole (d_1;d_2) mm</th>
<th>Dimensions</th>
<th>Axial clearances (a) and (b) (\text{mm})</th>
<th>Mass moment of inertia (J) (\text{kgm}^2)</th>
<th>Weight (W) kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>0.95</td>
<td>7500</td>
<td>12 40</td>
<td>A 118 92 58.5 60 90 52 5 3.5 E+72</td>
<td>0.5 0.01 5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>2.1</td>
<td>6900</td>
<td>22 54</td>
<td>B 145 115 72 70 100 71 5 7 E+91</td>
<td>0.5 0.02 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>3.5</td>
<td>6300</td>
<td>22 63</td>
<td>C 165 135 82 80 110 83 5 7 E+107</td>
<td>0.5 0.05 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>5.9</td>
<td>5900</td>
<td>28 78</td>
<td>D 200 160 94.5 90 120 103 4 8.5 E+126</td>
<td>0.5 0.1 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>9</td>
<td>5400</td>
<td>28 85</td>
<td>E 220 178 105 100 130 116 4 9 E+142</td>
<td>0.5 0.16 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>13</td>
<td>5000</td>
<td>32 100</td>
<td>F 240 196 115 110 140 133 4 9 E+158</td>
<td>0.5 0.25 42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>18</td>
<td>4700</td>
<td>32 108</td>
<td>G 270 225 130 125 150 142 7 12 E+176</td>
<td>0.5 0.5 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>23</td>
<td>4300</td>
<td>55 120</td>
<td>H 280 240 140 140 170 156 12 12 E+194</td>
<td>1 0.64 72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>30.5</td>
<td>4000</td>
<td>65 135</td>
<td>I 310 265 150 150 180 177 12 12 E+208</td>
<td>1 1 96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>42</td>
<td>3700</td>
<td>75 150</td>
<td>J 340 295 175 170 200 200 10 15 E+240</td>
<td>1 1.93 136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>61</td>
<td>3400</td>
<td>85 175</td>
<td>K 390 325 190 190 230 230 15 15 E+262</td>
<td>1 3.14 182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>90</td>
<td>3100</td>
<td>120 200</td>
<td>L 435 370 219 220 260 261 18 17 E+308</td>
<td>1 5.75 268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>130</td>
<td>2900</td>
<td>140 225</td>
<td>M 480 415 249 250 300 296 18 17 E+352</td>
<td>1 9.85 365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>189</td>
<td>2700</td>
<td>160 260</td>
<td>N 545 465 278 280 330 338 21 20 E+392</td>
<td>1 18.4 553</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) With these axial clearances, the permissible angular displacement \(\Delta K_{\text{perm}}=0.6^\circ\) for each coupling half.
2) Values for the complete coupling, without spacer, for bore \(d_1,d_2\) max.
3) The dismounting dimension \(F\) is required for the vertical installation and removal of the machine and for changing the O-rings.
4) Speed \(n_{\text{max}}\) depends on the length and on the weight of the spacer.
12.2.5 Dimensions for the SBGk coupling

<table>
<thead>
<tr>
<th>Size</th>
<th>Nominal torque T_{kn} kNm</th>
<th>Speed n_{max} rpm</th>
<th>Nominal bore</th>
<th>Dimensions</th>
<th>Mass moment of inertia I_{mm} kgm²</th>
<th>Weight kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>0.95</td>
<td>7500</td>
<td>12 61 46</td>
<td>A B C D D₁ H H₁ J K L₀</td>
<td>E-79 0.01</td>
<td>8.3</td>
</tr>
<tr>
<td>48</td>
<td>2.1</td>
<td>6900</td>
<td>22 73 59</td>
<td>145 115 130 60 70 95 77 5 5</td>
<td>E-101 0.03</td>
<td>13.5</td>
</tr>
<tr>
<td>60</td>
<td>3.5</td>
<td>6300</td>
<td>22 86 69</td>
<td>165 135 150 70 80 112 90 5 5</td>
<td>E-117 0.06</td>
<td>20</td>
</tr>
<tr>
<td>70</td>
<td>5.9</td>
<td>5900</td>
<td>28 100 85</td>
<td>200 160 172 80 90 130 112.5 4 6</td>
<td>E-138 0.14</td>
<td>33</td>
</tr>
<tr>
<td>80</td>
<td>9</td>
<td>5400</td>
<td>28 115 98</td>
<td>220 178 192 90 100 150 128 4 6</td>
<td>E-154 0.24</td>
<td>46</td>
</tr>
<tr>
<td>90</td>
<td>13</td>
<td>5000</td>
<td>32 131 110</td>
<td>240 196 212 100 110 170 145 4 6</td>
<td>E-170 0.38</td>
<td>58</td>
</tr>
<tr>
<td>100</td>
<td>18</td>
<td>4700</td>
<td>32 146 123</td>
<td>270 225 236 110 125 190 160.5 7 8</td>
<td>E-192 0.68</td>
<td>86</td>
</tr>
<tr>
<td>110</td>
<td>23</td>
<td>4300</td>
<td>55 158 135</td>
<td>280 240 256 120 140 205 176 12 8</td>
<td>E-210 0.95</td>
<td>102</td>
</tr>
<tr>
<td>125</td>
<td>30.5</td>
<td>4000</td>
<td>65 173 150</td>
<td>310 265 276 130 150 225 205.5 12 8</td>
<td>E-224 1.54</td>
<td>135</td>
</tr>
<tr>
<td>140</td>
<td>42</td>
<td>3700</td>
<td>75 192 170</td>
<td>340 295 320 150 170 250 224.5 10 10</td>
<td>E-260 2.86</td>
<td>189</td>
</tr>
<tr>
<td>160</td>
<td>61</td>
<td>3400</td>
<td>85 219 195</td>
<td>390 325 350 165 190 285 256.5 15 10</td>
<td>E-282 4.6</td>
<td>255</td>
</tr>
<tr>
<td>180</td>
<td>90</td>
<td>3100</td>
<td>120 250 220</td>
<td>435 370 404 190 220 325 288.5 18 12</td>
<td>E-332 8.54</td>
<td>380</td>
</tr>
<tr>
<td>200</td>
<td>130</td>
<td>2900</td>
<td>140 277 245</td>
<td>480 415 464 220 250 360 320.5 18 12</td>
<td>E-376 15.1</td>
<td>526</td>
</tr>
<tr>
<td>225</td>
<td>189</td>
<td>2700</td>
<td>160 315 275</td>
<td>545 465 518 245 280 410 362 21 14</td>
<td>E-420 26.7</td>
<td>763</td>
</tr>
<tr>
<td>250</td>
<td>245</td>
<td>2400</td>
<td>160 346 305</td>
<td>580 510 574 300 300 450 400 164 138</td>
<td>E-708 40</td>
<td>995</td>
</tr>
<tr>
<td>265</td>
<td>330</td>
<td>2200</td>
<td>180 369 335</td>
<td>645 560 626 330 330 520 440 174 140</td>
<td>E-744 57</td>
<td>1244</td>
</tr>
<tr>
<td>280</td>
<td>390</td>
<td>2100</td>
<td>200 400 350</td>
<td>680 595 646 330 330 520 460 194 180</td>
<td>E-864 77</td>
<td>1408</td>
</tr>
<tr>
<td>315</td>
<td>535</td>
<td>2000</td>
<td>220 423 390</td>
<td>745 660 706 360 360 550 510 205 191</td>
<td>E-928 122</td>
<td>1846</td>
</tr>
<tr>
<td>335</td>
<td>580</td>
<td>1900</td>
<td>240 446 410</td>
<td>775 675 747 380 380 580 535 219 206</td>
<td>E-993 155</td>
<td>2214</td>
</tr>
<tr>
<td>355</td>
<td>740</td>
<td>1800</td>
<td>260 477 440</td>
<td>825 725 788 400 400 620 580 228.5 216.5</td>
<td>E-1042 209</td>
<td>2612</td>
</tr>
<tr>
<td>375</td>
<td>950</td>
<td>1700</td>
<td>280 500 470</td>
<td>915 795 818 420 420 650 620 224.5 202.5</td>
<td>E-1021 320</td>
<td>3565</td>
</tr>
</tbody>
</table>

1) Nominal values for the complete coupling, without intermediate shaft, for bore d₁; d₂ max. and d₃; d₄ max.
2) Speed n_{max} depends on the length of the intermediate shaft.
Dimensions for the SRGk coupling

<table>
<thead>
<tr>
<th>Size</th>
<th>Nominal torque T_{EN} Nm</th>
<th>Speed n_{max} rpm</th>
<th>Bore d_1; d_2; d_3; d_4</th>
<th>Dimensions</th>
<th>Axial clearances a and b</th>
<th>Mass moment of inertia J kgm²</th>
<th>Weight E kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>0.95</td>
<td>7500</td>
<td>12 61 40</td>
<td>L, A, B, C, D</td>
<td>0.5 0.013 8.5</td>
<td>3808</td>
<td>106</td>
</tr>
<tr>
<td>48</td>
<td>2.1</td>
<td>6900</td>
<td>22 73 54</td>
<td></td>
<td>0.5 0.031 14.1</td>
<td>4848</td>
<td>136</td>
</tr>
<tr>
<td>60</td>
<td>3.5</td>
<td>6300</td>
<td>22 86 63</td>
<td></td>
<td>0.5 0.062 20.5</td>
<td>6036</td>
<td>164</td>
</tr>
<tr>
<td>70</td>
<td>5.9</td>
<td>5900</td>
<td>28 100 78</td>
<td></td>
<td>0.5 0.15 33.5</td>
<td>7200</td>
<td>200</td>
</tr>
<tr>
<td>80</td>
<td>9</td>
<td>5400</td>
<td>28 115 85</td>
<td></td>
<td>0.5 0.25 48</td>
<td>8000</td>
<td>260</td>
</tr>
<tr>
<td>90</td>
<td>13</td>
<td>5000</td>
<td>32 131 100</td>
<td></td>
<td>0.5 0.4 60</td>
<td>9000</td>
<td>324</td>
</tr>
<tr>
<td>100</td>
<td>18</td>
<td>4700</td>
<td>32 146 108</td>
<td></td>
<td>0.5 0.72 90</td>
<td>10248</td>
<td>400</td>
</tr>
<tr>
<td>110</td>
<td>23</td>
<td>4300</td>
<td>55 158 120</td>
<td></td>
<td>1 1 106</td>
<td>11528</td>
<td>480</td>
</tr>
<tr>
<td>125</td>
<td>30.5</td>
<td>4000</td>
<td>65 173 135</td>
<td></td>
<td>1 1.6 142</td>
<td>12788</td>
<td>600</td>
</tr>
<tr>
<td>140</td>
<td>42</td>
<td>3700</td>
<td>75 192 150</td>
<td></td>
<td>1 2.95 195</td>
<td>14044</td>
<td>720</td>
</tr>
<tr>
<td>160</td>
<td>61</td>
<td>3400</td>
<td>85 219 175</td>
<td></td>
<td>1 4.7 264</td>
<td>15244</td>
<td>860</td>
</tr>
<tr>
<td>180</td>
<td>90</td>
<td>3100</td>
<td>120 250 200</td>
<td></td>
<td>1 9 400</td>
<td>17632</td>
<td>980</td>
</tr>
<tr>
<td>200</td>
<td>130</td>
<td>2900</td>
<td>140 277 225</td>
<td></td>
<td>1 15.6 552</td>
<td>20000</td>
<td>1200</td>
</tr>
<tr>
<td>225</td>
<td>189</td>
<td>2700</td>
<td>160 315 260</td>
<td></td>
<td>1 28.2 790</td>
<td>22500</td>
<td>1400</td>
</tr>
</tbody>
</table>

1) With these axial clearances, the permissible angular displacement ΔK_w perm. =0.6° for each coupling half.

2) Values for the complete coupling, without intermediate shaft, for bore d_1; d_2 max. and d_3; d_4 max.

3) Speed n_{max} depends on the length and on the weight of the intermediate shaft.
Technical data

Dimensions for the SBkD coupling

<table>
<thead>
<tr>
<th>Size</th>
<th>Nominal torque T_{nom}</th>
<th>n_{max}</th>
<th>Bore hole d₁, d₂</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>H</th>
<th>J</th>
<th>L₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kNm</td>
<td>rpm</td>
<td>mm</td>
</tr>
<tr>
<td>38</td>
<td>0.95</td>
<td>7500</td>
<td>12</td>
<td>46</td>
<td>118</td>
<td>92</td>
<td>56.5</td>
<td>60</td>
<td>K₁+3</td>
<td>90</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>48</td>
<td>2.1</td>
<td>6900</td>
<td>12</td>
<td>46</td>
<td>145</td>
<td>115</td>
<td>66</td>
<td>70</td>
<td>K₀+2</td>
<td>100</td>
<td>77</td>
<td>5</td>
</tr>
<tr>
<td>60</td>
<td>3.5</td>
<td>6300</td>
<td>12</td>
<td>46</td>
<td>165</td>
<td>135</td>
<td>76</td>
<td>80</td>
<td>K₀+3</td>
<td>110</td>
<td>90</td>
<td>5.5</td>
</tr>
<tr>
<td>70</td>
<td>5.9</td>
<td>5900</td>
<td>12</td>
<td>46</td>
<td>185</td>
<td>155</td>
<td>86</td>
<td>90</td>
<td>K₀+3</td>
<td>120</td>
<td>112.5</td>
<td>4</td>
</tr>
<tr>
<td>80</td>
<td>9</td>
<td>5400</td>
<td>12</td>
<td>46</td>
<td>200</td>
<td>178</td>
<td>96.5</td>
<td>100</td>
<td>K₀+1</td>
<td>130</td>
<td>128</td>
<td>4</td>
</tr>
<tr>
<td>90</td>
<td>13</td>
<td>5000</td>
<td>12</td>
<td>46</td>
<td>220</td>
<td>196</td>
<td>106.5</td>
<td>110</td>
<td>K₀+3</td>
<td>140</td>
<td>145</td>
<td>5</td>
</tr>
<tr>
<td>100</td>
<td>18</td>
<td>4700</td>
<td>12</td>
<td>46</td>
<td>240</td>
<td>214</td>
<td>116.5</td>
<td>125</td>
<td>K₀+3</td>
<td>150</td>
<td>160.5</td>
<td>7</td>
</tr>
<tr>
<td>110</td>
<td>23</td>
<td>4300</td>
<td>12</td>
<td>46</td>
<td>260</td>
<td>232</td>
<td>126.5</td>
<td>135</td>
<td>K₀+3</td>
<td>160</td>
<td>176</td>
<td>12</td>
</tr>
<tr>
<td>125</td>
<td>30.5</td>
<td>4000</td>
<td>12</td>
<td>46</td>
<td>280</td>
<td>250</td>
<td>136.5</td>
<td>150</td>
<td>K₀+4</td>
<td>180</td>
<td>200.5</td>
<td>13</td>
</tr>
<tr>
<td>140</td>
<td>42</td>
<td>3700</td>
<td>12</td>
<td>46</td>
<td>300</td>
<td>268</td>
<td>146.5</td>
<td>165</td>
<td>K₀+5</td>
<td>200</td>
<td>224.5</td>
<td>10</td>
</tr>
<tr>
<td>160</td>
<td>61</td>
<td>3400</td>
<td>12</td>
<td>46</td>
<td>320</td>
<td>286</td>
<td>156.5</td>
<td>180</td>
<td>K₀+7</td>
<td>230</td>
<td>256.5</td>
<td>16</td>
</tr>
<tr>
<td>180</td>
<td>90</td>
<td>3100</td>
<td>12</td>
<td>46</td>
<td>340</td>
<td>304</td>
<td>166.5</td>
<td>195</td>
<td>K₀+8</td>
<td>260</td>
<td>288.5</td>
<td>18</td>
</tr>
<tr>
<td>200</td>
<td>130</td>
<td>2900</td>
<td>12</td>
<td>46</td>
<td>360</td>
<td>322</td>
<td>176.5</td>
<td>210</td>
<td>K₀+8</td>
<td>300</td>
<td>320.5</td>
<td>19</td>
</tr>
<tr>
<td>225</td>
<td>189</td>
<td>2700</td>
<td>12</td>
<td>46</td>
<td>380</td>
<td>340</td>
<td>186.5</td>
<td>225</td>
<td>K₀+9</td>
<td>330</td>
<td>362</td>
<td>22</td>
</tr>
</tbody>
</table>

1) Relating to a permissible angular displacement of ΔKₚₚₑₘₓ = 0.75° for each coupling half. These values do not apply to the braking equipment.

2) Values for the complete coupling, without brake disc, for bore d₁, d₂ max.

3) The dismounting dimension F is required to change the O-rings.

4) Speed nₘₚₑₘₓ depends on the permissible circumferential speed of the brake disc. Observe the brake manufacturer's specifications!

K₁, M, T see Page 67
<table>
<thead>
<tr>
<th>Size</th>
<th>Brake disc diameter M</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>38</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>48</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>60</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>70</td>
<td>250</td>
<td>315</td>
</tr>
<tr>
<td>80</td>
<td>315</td>
<td>400</td>
</tr>
<tr>
<td>90</td>
<td>315</td>
<td>400</td>
</tr>
<tr>
<td>100</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>110</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>125</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>140</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>160</td>
<td>500</td>
<td>630</td>
</tr>
<tr>
<td>180</td>
<td>500</td>
<td>630</td>
</tr>
<tr>
<td>200</td>
<td>630</td>
<td>710</td>
</tr>
<tr>
<td>225</td>
<td>710</td>
<td>-</td>
</tr>
</tbody>
</table>

Tab. 11: Recommended assignment of SBkD couplings to brake discs

<table>
<thead>
<tr>
<th>M mm</th>
<th>Brake disc dimensions</th>
<th>Mass moment of inertia 1) kgm²</th>
<th>Weight 1) kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>75 8</td>
<td>0.033</td>
<td>4.22</td>
</tr>
<tr>
<td>250</td>
<td>95 9</td>
<td>0.090</td>
<td>7.25</td>
</tr>
<tr>
<td>315</td>
<td>118 11</td>
<td>0.280</td>
<td>13.50</td>
</tr>
<tr>
<td>400</td>
<td>150 14</td>
<td>0.90</td>
<td>28.0</td>
</tr>
<tr>
<td>500</td>
<td>190 18</td>
<td>2.35</td>
<td>45.0</td>
</tr>
<tr>
<td>630</td>
<td>236 22</td>
<td>7.50</td>
<td>94.0</td>
</tr>
<tr>
<td>710</td>
<td>265 22</td>
<td>12.50</td>
<td>123.0</td>
</tr>
</tbody>
</table>

1) Weights and mass moment of inertia relating to the largest coupling size assigned.

Tab. 12: Dimensions for the SBkD brake discs
Dimensions for the SBkT coupling

<table>
<thead>
<tr>
<th>Size kNm</th>
<th>Nominal torque T_{IN}</th>
<th>Speed n_{max}</th>
<th>Bore hole d_1; d_2 max</th>
<th>Dimensions</th>
<th>Max. static radial displacement ΔK_r max</th>
<th>Mass moment of inertia kgm^2</th>
<th>Weight kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>0.95 kNm</td>
<td>7500 rpm</td>
<td>12; 46</td>
<td>A: 118 92 56.5 60 K_{1+3} 90 60 5 36.15 2 K_{1+75} 1.01 0.007 4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>2.1 kNm</td>
<td>6900 rpm</td>
<td>22; 59</td>
<td>B: 145 115 66 70 K_{1+3} 100 77 5.5 36.15 2 K_{1+94} 1.26 0.017 7.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>3.5 kNm</td>
<td>6300 rpm</td>
<td>22; 69</td>
<td>C: 165 135 76 80 K_{1+5} 110 90 6.5 50.15 2 K_{1+112} 1.50 0.035 11.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>5.9 kNm</td>
<td>5900 rpm</td>
<td>28; 85</td>
<td>D: 200 160 87.5 90 K_{1+5} 120 112.5 5 50.15 2 K_{1+131} 1.73 0.085 19.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>9 kNm</td>
<td>5400 rpm</td>
<td>28; 98</td>
<td>E: 220 178 96.5 100 K_{1+5} 130 128 6 50.15 2 K_{1+147} 1.95 0.13 26.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>13 kNm</td>
<td>5000 rpm</td>
<td>32; 110</td>
<td>F: 240 196 106.5 110 K_{1+7} 140 145 7 51.15 2 K_{1+165} 2.25 0.21 32.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>18 kNm</td>
<td>4700 rpm</td>
<td>32; 123</td>
<td>G: 270 225 119.5 125 K_{1+5} 150 160.5 8 50.15 3 K_{1+181} 2.40 0.4 46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>23 kNm</td>
<td>4300 rpm</td>
<td>55; 135</td>
<td>H: 280 240 129.5 140 K_{1+7} 170 176 14 51.15 3 K_{1+201} 2.70 0.53 57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>30.5 kNm</td>
<td>4000 rpm</td>
<td>65; 150</td>
<td>I: 310 265 139 150 K_{1+8} 180 200.5 15 51.65 3 K_{1+216} 2.85 0.84 59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>42 kNm</td>
<td>3700 rpm</td>
<td>75; 170</td>
<td>J: 340 295 162.5 170 K_{1+11} 200 224.5 13 53.15 3 K_{1+251} 3.30 1.5 111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>61 kNm</td>
<td>3400 rpm</td>
<td>85; 195</td>
<td>K: 390 325 177.5 190 K_{1+15} 230 256.5 20 55.15 3 K_{1+277} 3.60 2.6 153</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>90 kNm</td>
<td>3100 rpm</td>
<td>120; 220</td>
<td>L: 435 370 205 220 K_{1+14} 260 288.5 22 54.65 3 K_{1+322} 4.20 4.7 217</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>130 kNm</td>
<td>2900 rpm</td>
<td>140; 245</td>
<td>M: 480 415 235 250 K_{1+18} 300 320.5 24 56.65 3 K_{1+370} 4.80 8.1 303</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>189 kNm</td>
<td>2700 rpm</td>
<td>160; 275</td>
<td>N: 545 465 262.5 280 K_{1+21} 330 362 28 58.15 4 K_{1+413} 5.40 15.2 442</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Relating to a permissible angular displacement of ΔK_w perm. = 0.75° for each coupling half. These values do not apply to the braking equipment.
2) Values for the complete coupling, without brake disc, for bore d_1; d_2 max.
3) The dismounting dimension F is required to change the O-rings.
4) Check the clearance R with the axial clearance for the brake clamps.
5) Speed n_{max} depends on the permissible circumferential speed of the brake disc. Observe the brake manufacturer's specifications!

K_1, M, S, T see Page 69
Technical data

Brake disc diameter M (nominal size)

<table>
<thead>
<tr>
<th>Size</th>
<th>mm</th>
<th>mm</th>
<th>mm</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>48</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60</td>
<td>350</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>70</td>
<td>400</td>
<td>460</td>
<td>515</td>
<td>-</td>
</tr>
<tr>
<td>80</td>
<td>400</td>
<td>460</td>
<td>515</td>
<td>-</td>
</tr>
<tr>
<td>90</td>
<td>480</td>
<td>515</td>
<td>610</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>480</td>
<td>515</td>
<td>610</td>
<td>710</td>
</tr>
<tr>
<td>110</td>
<td>515</td>
<td>610</td>
<td>710</td>
<td>-</td>
</tr>
<tr>
<td>125</td>
<td>515</td>
<td>610</td>
<td>710</td>
<td>810</td>
</tr>
<tr>
<td>140</td>
<td>610</td>
<td>710</td>
<td>810</td>
<td>-</td>
</tr>
<tr>
<td>160</td>
<td>610</td>
<td>710</td>
<td>810</td>
<td>915</td>
</tr>
<tr>
<td>180</td>
<td>710</td>
<td>810</td>
<td>915</td>
<td>-</td>
</tr>
<tr>
<td>200</td>
<td>710</td>
<td>810</td>
<td>915</td>
<td>-</td>
</tr>
<tr>
<td>225</td>
<td>810</td>
<td>915</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tab. 13: Recommended assignment of SBkT couplings to brake discs

<table>
<thead>
<tr>
<th>Nominal size M mm</th>
<th>Actual size M mm</th>
<th>T mm</th>
<th>K, mm</th>
<th>S mm</th>
<th>Mass moment of inertia 1) kgm²</th>
<th>Weight 1) kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>300</td>
<td>12.7</td>
<td>8</td>
<td>34.65</td>
<td>0.099</td>
<td>6.7</td>
</tr>
<tr>
<td>350</td>
<td>356</td>
<td>12.7</td>
<td>10</td>
<td>47.65</td>
<td>0.190</td>
<td>10.0</td>
</tr>
<tr>
<td>400</td>
<td>406</td>
<td>12.7</td>
<td>13</td>
<td>47.65</td>
<td>0.300</td>
<td>12.0</td>
</tr>
<tr>
<td>460</td>
<td>457</td>
<td>12.7</td>
<td>16</td>
<td>47.65</td>
<td>0.480</td>
<td>16.0</td>
</tr>
<tr>
<td>515</td>
<td>514</td>
<td>12.7</td>
<td>16</td>
<td>47.65</td>
<td>0.57</td>
<td>20.0</td>
</tr>
<tr>
<td>610</td>
<td>610</td>
<td>12.7</td>
<td>16</td>
<td>47.65</td>
<td>1.50</td>
<td>26.0</td>
</tr>
<tr>
<td>710</td>
<td>711</td>
<td>12.7</td>
<td>18</td>
<td>47.65</td>
<td>2.90</td>
<td>39.0</td>
</tr>
<tr>
<td>810</td>
<td>812</td>
<td>12.7</td>
<td>23</td>
<td>47.65</td>
<td>5.80</td>
<td>61.0</td>
</tr>
<tr>
<td>915</td>
<td>915</td>
<td>12.7</td>
<td>23</td>
<td>47.65</td>
<td>10.00</td>
<td>92.0</td>
</tr>
</tbody>
</table>

1) Weights and mass moment of inertia relating to the largest coupling size assigned.

Tab. 14: Dimensions for the SBkT brake discs
12.2.9 Dimensions for the SBki coupling

Size	Nominal torque T_{sk} kNm	Nominal speed n_{max} rpm	Bore hole d_1, d_2 min	A mm	B mm	C mm	D mm	E mm	E_1 mm	E_2 mm	F(3) mm	H mm	J mm	L_0 mm	Max. static radial displacement $\Delta K_{w \text{perm.}}$ mm	Mass moment of inertia J_{rot} kgm2	Weight(4) kg	
38	0.95	7500	12 46	118	92	121	60	9	21	33	90	8	20	81	1.01	0.007	4.7	
48	2.1	6900	22 59	145	115	142	70	9	30	51	100	77	8.5	29.5	100	1.26	0.018	8.6
60	3.5	6300	22 69	165	135	162	80	10	37	64	110	90	9	36	117	1.50	0.036	12.5
70	5.9	5900	28 85	200	160	186	90	11	47	83	120	112.5	8	44	137	1.73	0.087	20.8
80	9	5400	28 98	220	178	209	100	12	54	96	130	128	9.5	51.5	154	1.95	0.146	27.4
90	13	5000	32 110	240	196	229	110	14	62	110	140	145	10.5	58.5	172	2.25	0.22	33.5
100	18	4700	32 123	270	225	256	125	15	66	117	150	160.5	13	64	191	2.40	0.42	53
110	23	4300	55 135	280	240	276	140	15	69	123	170	176	18	72	209	2.70	0.55	62
125	30.5	4000	65 150	310	265	297	150	17	75	133	180	200.5	19.5	77.5	225	2.85	0.91	81
140	42	3700	75 170	340	295	343	170	18	88	158	200	224.5	16.5	86.5	258	3.30	1.58	115
160	61	3400	85 195	390	325	373	190	20	92	164	230	256.5	22.5	94.5	282	3.60	2.78	159
180	90	3100	120 220	435	370	430	220	20	108	196	260	288.5	25	113	328	4.20	4.96	227
200	130	2900	140 245	480	415	490	250	22	124	226	300	320.5	26	128	374	4.80	8.4	315
225	189	2700	160 275	545	465	547	280	24	136	248	330	362	29.5	141.5	416	5.40	15.6	447

1) Relating to a permissible angular displacement of $\Delta K_{w \text{perm.}} = 0.75^\circ$ for each coupling half.
2) Values for the complete coupling for bore d_1, d_2 max.
3) The dismounting dimension F is required for the vertical installation and removal of the machine and for changing the O-rings.

[Diagram with dimensions and notes]
12.3 Tightening torques

12.3.1 Tightening torques for self-sealing screw plugs

<table>
<thead>
<tr>
<th>Self-sealing screw plugs</th>
<th>Tightening torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>M8x1</td>
<td>7 Nm</td>
</tr>
<tr>
<td>M10x1</td>
<td>15 Nm</td>
</tr>
<tr>
<td>M12x1.5</td>
<td>18 Nm</td>
</tr>
</tbody>
</table>

Tab. 15: Tightening torques for self-sealing screw plugs

12.3.2 Tightening torques for screws used by couplings in the insulated version

<table>
<thead>
<tr>
<th>Thread</th>
<th>Tightening torque (Nm)</th>
<th>Thread</th>
<th>Tightening torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>4</td>
<td>M18</td>
<td>195</td>
</tr>
<tr>
<td>M6</td>
<td>6.7</td>
<td>M20</td>
<td>275</td>
</tr>
<tr>
<td>M8</td>
<td>16.7</td>
<td>M22</td>
<td>365</td>
</tr>
<tr>
<td>M10</td>
<td>33</td>
<td>M24</td>
<td>470</td>
</tr>
<tr>
<td>M12</td>
<td>57</td>
<td>M27</td>
<td>700</td>
</tr>
<tr>
<td>M14</td>
<td>90</td>
<td>M33</td>
<td>1250</td>
</tr>
<tr>
<td>M16</td>
<td>140</td>
<td>M36</td>
<td>On request</td>
</tr>
</tbody>
</table>

Tab. 16: Tightening torques for fitted bolts in insulating bushes (friction coefficient $\mu = 0.14$)

12.3.3 Tightening torques for other screws

<table>
<thead>
<tr>
<th>Thread</th>
<th>Tightening torque (Nm)</th>
<th>Thread</th>
<th>Tightening torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>6</td>
<td>M18</td>
<td>290</td>
</tr>
<tr>
<td>M6</td>
<td>10</td>
<td>M20</td>
<td>410</td>
</tr>
<tr>
<td>M8</td>
<td>25</td>
<td>M22</td>
<td>550</td>
</tr>
<tr>
<td>M10</td>
<td>49</td>
<td>M24</td>
<td>710</td>
</tr>
<tr>
<td>M12</td>
<td>86</td>
<td>M27</td>
<td>1050</td>
</tr>
<tr>
<td>M14</td>
<td>135</td>
<td>M33</td>
<td>1900</td>
</tr>
<tr>
<td>M16</td>
<td>210</td>
<td>M36</td>
<td>2450</td>
</tr>
</tbody>
</table>

Tab. 17: Tightening torques for screws (friction coefficient $\mu = 0.14$)
12.4 Lubricants

If nothing else is stipulated in the dimension sheet, then as per "Table of lubricants for Curved Tooth Couplings with lubricant filling".

All lubricants used have to be suitable for the temperature range.

Temperature range: -20°C to +90°C
Higher temperatures only following consultation with RENK AG (Rheine plant).

<table>
<thead>
<tr>
<th>Size</th>
<th>SBk kg</th>
<th>SBRk kg</th>
<th>SBGk kg</th>
<th>SRGk kg</th>
<th>SBkD, SBkT kg</th>
<th>SBki kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>0.09</td>
<td>0.07</td>
<td>0.09</td>
<td>0.08</td>
<td>0.11</td>
<td>0.09</td>
</tr>
<tr>
<td>48</td>
<td>0.09</td>
<td>0.14</td>
<td>0.09</td>
<td>0.15</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>60</td>
<td>0.17</td>
<td>0.21</td>
<td>0.17</td>
<td>0.22</td>
<td>0.20</td>
<td>0.18</td>
</tr>
<tr>
<td>70</td>
<td>0.25</td>
<td>0.28</td>
<td>0.25</td>
<td>0.30</td>
<td>0.28</td>
<td>0.26</td>
</tr>
<tr>
<td>80</td>
<td>0.35</td>
<td>0.44</td>
<td>0.35</td>
<td>0.46</td>
<td>0.45</td>
<td>0.36</td>
</tr>
<tr>
<td>90</td>
<td>0.40</td>
<td>0.60</td>
<td>0.40</td>
<td>0.63</td>
<td>0.65</td>
<td>0.41</td>
</tr>
<tr>
<td>100</td>
<td>0.60</td>
<td>0.90</td>
<td>0.60</td>
<td>1.0</td>
<td>0.80</td>
<td>0.62</td>
</tr>
<tr>
<td>110</td>
<td>0.75</td>
<td>1.0</td>
<td>0.75</td>
<td>1.1</td>
<td>0.95</td>
<td>0.77</td>
</tr>
<tr>
<td>125</td>
<td>1.0</td>
<td>1.4</td>
<td>1.0</td>
<td>1.2</td>
<td>1.3</td>
<td>1.1</td>
</tr>
<tr>
<td>140</td>
<td>1.3</td>
<td>1.7</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>1.7</td>
</tr>
<tr>
<td>160</td>
<td>1.6</td>
<td>2.1</td>
<td>1.7</td>
<td>2.0</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>180</td>
<td>2.6</td>
<td>2.8</td>
<td>2.6</td>
<td>3.0</td>
<td>3.4</td>
<td>2.7</td>
</tr>
<tr>
<td>200</td>
<td>3.3</td>
<td>4.6</td>
<td>3.3</td>
<td>4.8</td>
<td>4.4</td>
<td>3.4</td>
</tr>
<tr>
<td>225</td>
<td>4.8</td>
<td>7.1</td>
<td>4.8</td>
<td>7.4</td>
<td>6.6</td>
<td>4.9</td>
</tr>
<tr>
<td>250</td>
<td>5.0</td>
<td>-</td>
<td>5.0</td>
<td>-</td>
<td>-</td>
<td>5.2</td>
</tr>
<tr>
<td>265</td>
<td>7.0</td>
<td>-</td>
<td>7.0</td>
<td>-</td>
<td>-</td>
<td>7.3</td>
</tr>
<tr>
<td>280</td>
<td>8.0</td>
<td>-</td>
<td>8.0</td>
<td>-</td>
<td>-</td>
<td>8.3</td>
</tr>
<tr>
<td>315</td>
<td>10.0</td>
<td>-</td>
<td>10.0</td>
<td>-</td>
<td>-</td>
<td>10.5</td>
</tr>
<tr>
<td>335</td>
<td>11.0</td>
<td>-</td>
<td>11.0</td>
<td>-</td>
<td>-</td>
<td>11.5</td>
</tr>
<tr>
<td>355</td>
<td>13.0</td>
<td>-</td>
<td>13.0</td>
<td>-</td>
<td>-</td>
<td>13.5</td>
</tr>
<tr>
<td>375</td>
<td>20.0</td>
<td>-</td>
<td>20.0</td>
<td>-</td>
<td>-</td>
<td>21.0</td>
</tr>
</tbody>
</table>

Tab. 18: Lubricants

Tab. 19: SBk lubricant quantity
<table>
<thead>
<tr>
<th>Size</th>
<th>Lubricant quantity without spacer</th>
<th>Lubricant quantity per 10 mm spacer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SBLk kg</td>
<td>SRLk kg</td>
</tr>
<tr>
<td>38</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>48</td>
<td>0.09</td>
<td>0.15</td>
</tr>
<tr>
<td>60</td>
<td>0.17</td>
<td>0.22</td>
</tr>
<tr>
<td>70</td>
<td>0.25</td>
<td>0.30</td>
</tr>
<tr>
<td>80</td>
<td>0.35</td>
<td>0.46</td>
</tr>
<tr>
<td>90</td>
<td>0.40</td>
<td>0.63</td>
</tr>
<tr>
<td>100</td>
<td>0.60</td>
<td>1.0</td>
</tr>
<tr>
<td>110</td>
<td>0.75</td>
<td>1.1</td>
</tr>
<tr>
<td>125</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>140</td>
<td>1.3</td>
<td>1.5</td>
</tr>
<tr>
<td>160</td>
<td>1.6</td>
<td>1.8</td>
</tr>
<tr>
<td>180</td>
<td>2.6</td>
<td>3.0</td>
</tr>
<tr>
<td>200</td>
<td>3.3</td>
<td>4.8</td>
</tr>
<tr>
<td>225</td>
<td>4.8</td>
<td>7.4</td>
</tr>
<tr>
<td>250</td>
<td>5.0</td>
<td>-</td>
</tr>
<tr>
<td>265</td>
<td>7.0</td>
<td>-</td>
</tr>
<tr>
<td>280</td>
<td>8.0</td>
<td>-</td>
</tr>
<tr>
<td>315</td>
<td>10.0</td>
<td>-</td>
</tr>
<tr>
<td>335</td>
<td>11.0</td>
<td>-</td>
</tr>
<tr>
<td>355</td>
<td>13.0</td>
<td>-</td>
</tr>
<tr>
<td>375</td>
<td>20.0</td>
<td>-</td>
</tr>
</tbody>
</table>

1) These coupling sizes do not require any additional quantity of grease for the spacer.

Tab. 20: Lubricant quantity for SBk coupling with spacer

If spacers are used, then an additional amount of lubricant is only required if the spacer is not sealed by bottom parts. All spacers with a length greater than 400 mm have bottom parts.

In couplings with a spacer, you can calculate the total amount of lubricant using two values from Tab. 20:

Total amount of lubricant = quantity of lubricant without spacer + (length in mm / 10 mm) • Additional quantity of lubricant for every 10 mm spacer.

Example

SBLk 100 coupling, spacer L = 200 mm

Lubricant quantity for SBLk 100: 0.60 kg

Lubricant quantity for spacer: (200 mm / 10 mm) • 0.012 kg = 0.24 kg

Total quantity of lubricant: 0.60 kg + 0.24 kg = 0.84 kg
12.5 Parts list and part numbers

12.5.1 Parts list and spare parts list

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Designation</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SBk</td>
</tr>
<tr>
<td>9010</td>
<td>Housing A</td>
<td>●</td>
</tr>
<tr>
<td>9020</td>
<td>Housing B</td>
<td>●</td>
</tr>
<tr>
<td>9030</td>
<td>Hub A</td>
<td>●</td>
</tr>
<tr>
<td>9040</td>
<td>Hub B</td>
<td>●</td>
</tr>
<tr>
<td>9050</td>
<td>Cover A</td>
<td>●</td>
</tr>
<tr>
<td>9060</td>
<td>Cover B</td>
<td>●</td>
</tr>
<tr>
<td>9070</td>
<td>Flange A</td>
<td>●</td>
</tr>
<tr>
<td>9080</td>
<td>Flange B</td>
<td>●</td>
</tr>
<tr>
<td>9090</td>
<td>Intermediate shaft</td>
<td>●</td>
</tr>
<tr>
<td>9100</td>
<td>Spacer</td>
<td>●</td>
</tr>
<tr>
<td>9110</td>
<td>Retaining ring</td>
<td>●</td>
</tr>
<tr>
<td>9125</td>
<td>Insulating disc</td>
<td>●</td>
</tr>
<tr>
<td>9126</td>
<td>Insulating washer</td>
<td>●</td>
</tr>
<tr>
<td>9140</td>
<td>Fitted bolt</td>
<td>●</td>
</tr>
<tr>
<td>9150</td>
<td>Hexagon head bolt</td>
<td>●</td>
</tr>
<tr>
<td>9160</td>
<td>Screw plug</td>
<td>●</td>
</tr>
<tr>
<td>9180</td>
<td>O-ring</td>
<td>●</td>
</tr>
<tr>
<td>9181</td>
<td>O-ring</td>
<td>●</td>
</tr>
<tr>
<td>9182</td>
<td>O-ring</td>
<td>●</td>
</tr>
<tr>
<td>9370</td>
<td>Nut, self-locking</td>
<td>●</td>
</tr>
<tr>
<td>9530</td>
<td>Insulating bush</td>
<td>●</td>
</tr>
<tr>
<td>9570</td>
<td>Washer</td>
<td>●</td>
</tr>
<tr>
<td>9670</td>
<td>Brake disc</td>
<td>●</td>
</tr>
</tbody>
</table>

Tab. 21: SBk parts list and spare parts list
12.5.2 Figures with part numbers

Fig. 21: Part numbers for the SBk coupling

Fig. 22: Part numbers for the SBRk coupling
Fig. 23: Part numbers for the SBLk coupling

Fig. 24: Part numbers for the SRLk coupling
Fig. 25: Part numbers for the SBGk coupling

Fig. 26: Part numbers for the SRGk coupling
Fig. 27: Part numbers for the SBkD coupling

Fig. 28: Part numbers for the SBkT coupling
Fig. 29: Part numbers for the SBki coupling
13 Index of technical terms

Threaded extraction hole
Thread attached in a component. If, during removal, one component needs to be released from one facing it, then you can turn a screw into the threaded extraction hole.

Stepped cylindrical interference fit
The stepped cylindrical interference fit, also known as step seat, is a sub-type of the cylindrical interference fit. The seat length of the interference fit is divided up into two "steps" of the same length. The difference in the diameters of the two steps is usually 2 mm. The graduation facilitates the disassembly of the component, the axial path for release is halved.

Distance plates
Distance plates are used for short term operation of the prime mover without a coupled processing machine, e.g. for determining the direction of rotation of the electric motor. The distance plate takes over the axial and radial guidance for the housing when the coupling is open. Two segments need to be fastened to the housing for each coupling half using screws.

Pull up dimension
The pull up dimension is the axial path that the tapered hub needs to be pushed onto the shaft in order to be able to transmit the required torque. The pull up dimension is measured starting from the zero position.

Floating to the surface or bloating
Interference fits must be radially expanded for removal. The hub can be pulled off axially as soon as it has been fully released from the shaft and is floating on the oil film.

Expansion pressure
The oil is pressed into the interference fit so that the hub/flange can be expanded radially. When the required expansion pressure is reached, the hub is normally released from the shaft. The expansion pressure must not exceed the maximum permissible expansion pressure, otherwise the hub will be overstretched and may tear.

Dismounting dimension F
The dismounting dimension F identifies the minimum required space between the housing and the adjacent machine. This space is needed in order to install or remove the machine vertically, to change the O-ring or to remove the retaining ring.

Pressurised oil assembly with sealing ring
If tapered interference fits are used, it is possible to seal the large taper diameter using an O-ring (or O-ring/supporting ring combination). This prevents the fitted joint from opening too quickly, which would prevent the required pressure from building up. When this sealing type is used, it is not possible to detect that the fit is floating.
Flange
In contrast to the hub, the flange component does not have external teeth.

Joint clearance
The joint clearance is the gap (clearance) between the bore hole and shafts (after heating up). The joint clearance prevents the interference fit from sticking during the joining process. It is recommended that a joint clearance of $0.001 \cdot d$ be calculated in.

Housing
External component with internal teeth. This is screwed together with a second housing or, for example, a spacer/intermediate shaft or flange.

Retaining ring
The retaining ring reduces the axial clearance in the coupling and enables axial guidance of the motor shaft via the shaft for the processing machine. The couplings with a retaining ring are limited in their ability to adjust shaft misalignments by contrast to the normal versions. All series with an "R" in the type designation include a retaining ring.

Gap
A gap indicates the obliquity of the fronts of the two hubs or flanges and thus the angular offset of the two shafts towards one another (see Fig. 8 on Page 28). The value "$y-z$" is the difference between the largest gap "y" and the smallest gap "z".

Hub
The hub is the coupling component with external teeth which, as a general rule (for other options, see Flange) is drawn onto the shaft of the prime mover or processing machine.

Zero position
The zero position is reached when the hub/flange (when it is not hot) has been pushed so far onto the shaft that the fitting surfaces lie on top of each other without pressure.

Zero setting
The zero setting (position of the number 0) is used for the correct assembly of the main coupling components. The two zeros must always be opposite each other on the components.

Oversize
Difference between the diameter of the bore hole and shaft diameter prior to joining in interference fits.

Surface for balancing run
The coupling elements are placed on these surfaces on the balancing machine.
14 Index

A
Align ... 26
Aligning the shafts 25
Angular displacement 25
Angular offset 25, 28
Applicable documents 8
Assembly ... 16
Axial offset .. 25, 27
C
Changing the lubricant 47
Checking the delivery 14
Cleaning the coupling 17
D
Design configurations 5
Detecting faults and troubleshooting 44
Determining the alignment values 29
Dimensions ... 29
Disassembling the coupling 50
Disassembly .. 49
Disposal .. 59
Drilling out the coupling 18
F
Factory markings 17
Fitting key connection 19
H
Hydraulically joining the interference fit 19
I
Improper use ... 9
Installing the coupling halves 30
Intended use ... 8
L
Label .. 17
Labelling in the text 7
Lubricant quantity 72
Lubrication ... 41
O
Operation ... 43
Order number ... 17
Ordering spare parts 48
P
Part numbers ... 74
Preparing the coupling 17
Preservation .. 15
Product components 9
Provisions to be met by the operating company 10
Pulling off the hubs or flanges 51
R
Radial offset ... 25, 27
Requirements to be met by personnel 10
S
Safety instructions in regard of operating phases 11
Safety Instructions, basic 10
Safety instructions, labelling 6
Screwing together the coupling 38
Shaft displacements 25
Spare parts list ... 74
Splines ... 19
Storage ... 15
T
Target group ... 6
Technical data 59
Thermally joining the interference fit 19
 Tightening torques 39, 71
To balance coupling 19
To be provided by the customer 9
To use distance plates 40
Transportation 14
Type .. 5
W
Warnings ... 7